

The Repayment of Local and Other Loans

Sinking Funds

The Repayment of Local and Other Loans

Sinking Funds

EDIIARD HARTLEY TURNER, A.C.A. Lecturer on Mrunicipal Acounts at the Manchester Municipal Sihool of Commerce

$$
n
$$

PREFACE.

In writing this book my primary object has been to render it practically useful to those engaged in connection with the loan debt of public authorities and privately owned undertakings. It is the result of actual experience extending over many years, but the problems which have arisen have been isolated examples and have not occurred in any regular sequence, but often at long intervals. For this reason each problem has been treated independently in order that any particular adjustment may be made by reference to a similar example fully worked out and described. This entails a certain amount of repetition in order that each chapter may contain a brief summary, and a reference to the results, of previous and subsequent investigations. In order to carry this out in its entirety, each adjustment has been reduced to a series of stages briefly stated, and is accompanied by detailed statements of the method adopted, and actual calculations upon standard forms which I have specially prepared. But I have gone further than this, and have grouped the problems under the heads of the various factors governing a sinking fund, namely, the amount in the fund, the period of repayment, the rate of accumulation and the rate of income to be received upon the present investments. This orderly arrangement of isolated practical examples has compelled a theoretical method of treatment which has been adopted throughout. In my own earlier experience I very soon realised that even after making the fullest use of the published tables of compound interest, the ordinary methods of arithmetic were utterly inadequate and that all calculations must be made by logarithms; consequently a full knowledge of the use of a log. table has been assumed. The next practical difficulty which arose was that the ordinary published tables of compound interest very often did not contain the required rate per cent., and it therefore became necessary to make the calculation by other means. For this reason I have included in the earlier chapters a brief summary of the mathematical principles, showing the derivation of the formulx upon which all the tables are constructed. In order, however, to render this method by formula generally available I have reduced all such calculations to simple rules, and in Chapter X , dealing with the
various standard raleolation forms, minnte instructions are given for finding the actual values of the whole of the fartors relating to any rate per eent. I have, in fact, embeavoured to state the methods in such a mammer that a knowledge of the meaning of the formula is not required.

Throughout the book the final results are expressed in decimal form. This couse has bern adopted partly in order to sare time, but primarily to make the book applicable to any currency of a decimal nature ; and it is recommended that all pro forma accomits should be prepared in this form.

The methods of adjustment described as the deductive method, the annual increment (ratio) method, and the ammal increment (balance of loan) method, are not new. The terms have merely heen used for convenienco of reference.

The actual compilation of the hook has oceupied considerable time, and it has not been written in the consecutive order in which it is now presented to the reader. It has involved the preparation of many standard forms and statements, and very many calculations which are not given in the text. Every effort has been made to ensure absolute accuracy of detail, but in a few cases the final decimal figure in the result obtained may not agree with the result found by another method, and the same applies to the final figure of some of the logs. These small differences are not, however, of any practical importance. The ross-referenes to other results have been rarefully compared, lout they are rely numerous and a fow droms may be found.

The methods adopted, and the results obtained, have been in all cases verified b_{y} an altermative method of proof, even where it is not shown in detail in the text. The summaries of methods, and the rules and formule given in italies at the head of the various chapters have been in all wases carefully rompared with the indivilnal statements and with each other, and a muiform wording has, as far as possible, been adopted throughout.

As stated in the Introdurdion, no attempt has beem made to include anthing in the mature of a full statement of the statutory oblagations as to the repayment of the loand debt of local anthorities or the policy of larliament with relation thereto, exeept so far as they affect the actual method of repalymert.
lin the final chapters dealinge with the life of the asset, the equation of the period of reparment and the incidenee of taxation a serious attempt has been made to elucidate this
difficult subject. It has been treated mainly from the mathematical standpoint, both as regards the annual instalment and interest upou the loan. It is a matter about which there is naturally some divergence of opinion as to its practical application, but I hope that the consillerations liere set forth will be of assistance in arriving at a lefinite solution.

The object of the book is entirely practical. I hope it witl materially assist those who are approaching the eomsideration of such problems for the first time, and that it will also be useful to those who are already fully acquainted with the subject, if only because it attempts to deal with it in a consecutire and orderly manner.

In conclusion, I wish to tender my thanks to my friend and colleagne, Mr. Arthur Holme, A.C'.A., who has assisted me in the revision of the mannscript and the correction of the proofs, and also to my son, Edwad Gordon Turner, who has rendered me very valuable aid in the preparation of the final manuseript and the verification of the varims calculations in the text.
E. II. T.

Manchester, November, 191.'.

TO AMERICAN READERS.

In the early part of the year 1906, I was appointed the British Accounting Expert to the National Civic Federation of New York in the Enquiry into the Municipal and Private Uwnership of Public Utilities (Municipal Trading) in Great Britain.

The enquiry was made by a Commission of Twenty-one, under the Chairmanship of Melville E. Ingalls, Chairman of the Board of Directors, Big Four Railroad, Cincinnati. The details of the enquiry were under the supervision of Dr. Milo R. Malthie, now a Nember of the Public Service Commission of the State of New York. The Report of the Commission is contained in three volumes, issued in New York in 1907.

The enquiry in Great Britain was confined to the results of municipal and private ownership and operation of gas works, street railways or tramways, and electric lighting and power undertakings. In the United States the enquiry was exteuded to water works.

The Commission examined 24 public and private undertakings in London, Birmingham, Dublin, Glasgow, Leicester, Liverpool, Manchester, Neweastle-on-Tyne, Norwich and sheffield.

The following is a full list of the Committee on Investigation : -

* Melville E. Ingalls, Chairman (Chairman Board of Directors, Big Four Railroad), Cincinnati.
Albert Shaw, Vice-Chairman (Editor "Review of Reviews"), New York City.
Talcott William (Editorial Writer, the Press), Philadelphia.
W. D. Mahon (President Association Street Railway Employes), Detroit.
*Professor Frank J. Goodnow (Columbia Cniversity), New York City.
*Walton Clark (Third Vice-President The United Gas Improvement Company), Philadelphia.
*Professor Edward W. Bemis (Superintendent Water Works), Cleveland.
*Professor John II. Gray (University of Minnesota), Minneapolis. Walter L. Fisher (Special Traction Counsel for City of Chicago and ex-President Municipal Voters' League), Chicago.
*'Timothy Healey (President Lnternational Brotherhood Stationary Firemen), Now Sork City.
*William J. Clark (General Manager Foreign Department, General Electrit Company), New Sork ('ity.

11. B. F. Macfarland (Yresident Board of C'ommissioners, District of Columbia), Washington.
Daniel J. Keefe (President International Longshoremen’s Association), Detroit.
*Professor Frank Parsons (Prevident National Public Uwnership Leagne), Boston.
*Professor Johu R. Commons (Wisconsin I'niversity), Madison, Wisconsin.
*J. W. Sullivan (Editor " ('lothing Trades" Bulletin"), New Sork City.
*F. J. McNulty (P'resident International Brotherhood of Electrical Workers), Washington.

* Albert E. Winchester (General Superintendent City of South Norwalk Electric TOorks), South Norwalk, Conn.
*Charles L. Edgar (President The Edison Electric and Illuminating Company), Boston.
*Dr. Milo R. Malthie (member of the Public Service Commission), New York City; now a member of the Public Service Commission of the State of New York.
Leo S. Rowe (University of Pennsylvania), Philadelphia.
*Edward A. Moffet, Secretary (Editor "Bricklayer and Mason"), ludianapolis, Ind.
The investigation in Great Britain was made by the members of the Committee indicated by an asterisk.
The following summary of the financial details of the undertakings examined will give some idea of the magnitude of the encuiry.
Loan Capital : -
Mutstanding:
Municipal $£ 18, s 66,648$
Private 6,144,945
- £25,011,59:3

Ropaid ber means of Ninking Fund:

$\begin{array}{rlllllr} & & & & & \begin{array}{r}£ 28,879,894 \\ \text { Share C'apital or Stock, Private } \\ \ldots\end{array} \ldots & \ldots \\ 12,146,504\end{array}$

```
Capital erpemled on. Works:-
    Mumicipal ... ... ... ... £`4,517,9%0
    Private ... ... ... ... ... 18,?66,368
                            £42,78:,738
Gross Revenue for the your under Eramination: Municipal ... ... ... ... \(£ 6,091,8 \mathfrak{( 1 )}\)
Private ... ... ... ... ... :3,956,936
————£10,048, 55 T
```

The examination by the experts was commenced early in March, 1906, and coutinued without interruption until the emd of July, 1906. The members of the Commission were engaged in Great Britain from 30th May to the end of July, 1906.

The expert assistance was divided between the Technical and Accounting sides. In each class of undertaking an American and a British terhniral expert made a joint investigat tion, valuation, and report.

The British technical experts were:-
Gas Works, Mr. William Newhigging, Consulting Enginecr, of Manchester.
Tramways (Strect Railroads), Mr. J. Il. Woodward, Consulting Engineer, London.

The American terlinical experts were:-
Electricity Supply, Mr. Mlbert E. Winchester, Gencral Supt. City of South Norwalk Electric Works, South Norwalk, Conn.
Gas Works, Mr. T. B. Klmmp, Inspecting Engincer of the United Gas Improvement Company, Philadelphia. Tramways (Street Railroads), Mr. Norman McD. ('rawford, Consulting Engineer, Hartford, Comn.

The accounting side of the whole of the undertakings examined was entrusted to myself and Mr. R. C. Tames, the Chief Accomntant to the I'nited Gas Improvement Company, of Philadelphia. During the investigation all the experte were in constant commmication and worked together, and each undertaking was, as far as possible, examined by them at the same time. This resulted in a very minute comparison of American and British terhnical and areomenting practice. During the months we were associated many friendships were formed, but
the greater value of the enquiry to all the experts engaged is undoubtedly the wider appreciation of American and British practice. On the technical and practical side, many hitherto diverging views were reconciled or reduced to an agreed mean, but as regards the accounting and financial side no such difference was found. In America, as in Great Britain, all problems relating to large financial operations follow the same economic laws, and the only variations on each side of the Atlantic are due to the actual conditions now existing. On this side the growth of large municipal undertakings, concerned with the provision of public utilities, has been a gradual process extending over many years requiring the constant supervision of Parliament. On the other side the municipal operation of public utilities is still in its infancy, and is therefore an urgent practical problem, as evidenced by the enquiry, made at rery considerable expense, by the National Civic Federation of New York.

In connection with pure methods of accounting, it must he arknowledged that as regards uniformity the British system is not so far adraned as the American. Standard methods have there long heen adopted for the accounts of gas works, electric lighting undertakings, and street railways, and inchude not only the form of the final Revenue Account and Balance Sheet. but also methods of analysis and book-keeping in minute detail. It is true that in Great Britain standard forms of accoments for gas works are contained in the Gas Works Clanses Act. The Board of Trade have, under their power in the Electric Lighting Acts, prescribed standard forms of account for electric lighting undertakings. A standard form of account for tramwars has been drawn up by the Tramway Institute and the Institute of Dunicipal Treasurers and Accombants, and as the result of an enquiry by a Government Departmental Committee (report dated 1907) further amended standard forms have been suggested for all the above-mentioned utilities. The British standard forms, however, are deficient to the extent that they lack that minute attention to detail which is the characteristic of the Ameriean systems. A standard form of revenue, or profit and loss, account may be very useful for eomparing the final results of the year's operations, but unless there is absolute uniformity of detail in the items charged to each head of operating expense it is impossible to make any reliable eomparison between the operating eosts of two or more undertakings. This fact was very dearly shown in the enguiry by the Commission in Great Britain.

Turning now to the immediate subject of this book, namely, the repayment of the loan debt of local authorities and privately owned undertakings, the result of the enquiry proved that as regards the actual methods of repayment the practice is the same in both countries. Another outstanding feature of the enquiry was the minute attention paid by the legal, labour and economic experts upon the Commission to the statutory and other obligations imposed by Parliament upon loral authorities in Great Britain. This was due to the fact that the municipal operation of public utilities in this country is a much older institution than in the United States. The report of the Commission contains much valuable information in considerable detail as to these statutory obligations and is a useful resumé of a very complicated question, well worth perusal by mumicipal experts in this country. This book does not in any way attempt to deal with these matters in an exhaustive manner, and they are only mentioned in so far as they relate to the actual methods of repayment of loan debt. In writing the book I have borne in mind the results of the enquiry and have so arranged it that it will apply to all problems in whatever currency. The formula relating to a geometrical progression does not recognise any geographical limits, consequently the methods based thereon may be applied equally in the United States, as in Great Britain. Owing to the interest in municipal ownership and operation in the United States, the practical application of the statutory obligations as regards the repayment of loan debt by British municipalities, even as briefly stated, will, it is hoped, be useful.

As far as possible the terms used have been chosen in order to avoid any misunderstanding on either side. The word " Corporation" in Great Britain denotes both a Local Authority and a privately owned undertaking. The term "Local Authority" has therefore been used throughout, although it may not in a few cases be strictly correct. It includes all public authorities having control of public moneys for the public good and empowered to raise such moneys by way of an annual rate based upon an assessment of the annual value of the property. It is not the practice in Great Britain to levy a local rate or assessment based upon the capital value. All such rates are levied at so many pence in the pound (£) sterling of annual value.

In Great Britain there are several kinds of privately owned companies or corporations, which may be divided into two groups. First, those in which the liability of the members is
unlimited, which, however, are not numerous. Secondly, those companies in which the liability of the members is limited to the actual amount for the time being unpaid upon the shares held by them. Such companies may be divided into two classes, namely, those which derive their powers of operation from, and are incorporated ly, special Act of Parliament: and, secondly, those incorporated under the Limited Liability Arts (The ('ompanies Sets, $186{ }^{\circ}$-1908). In this hook all such eompanies hare heen included under the generic term " Private I'ndertakings " as distinguished from "Local Authorities."

The capital of all privately owned companies or undertakings in Great Britain is provided by the members and is raised in various ways. In the case of rompanies incorporated under the Limited Liability Acts the capital is invariably raised by the issur of a definite number of shares of a uniform nominal ralue, now as a genteral rule of $£ 1$ each. In the case of companies incorporated by special Let of Parliament the capital is sometimes raised ly the issue of shares, similar to companies incorporated under the Limited Liability Acts, but often by the issue of stock. All capital raised by all privately owned undertakings, whether hy shares or stock, may he issued with cortain defined priorities or preferences loth as to dividend and also as to reparment upon the final winding up of the company. In all cases considered, the capital provided by the members of a privately owned undertaking has been included under the generic term of "Share C'apital or Stock."

The term "Loan Debt" has been used to denote all moneys borrowed by a public authority or private undertaking and sectured by way of mortgage upon the assets, including in the term assets the power of a local authority to lery a rate or ascessment. In the ease of a private undertaking such loan dobt is always repayable, on a winding up, in priority to the share mapital or stork, and may or may not be repayable, during the life of the undertaking, bey mems of a sinking fund to be built ny out of the ammal profits. In the case of all publie anthorities in Corat Britain, Parlament now invariably imposes the whigation to mpay such loan deht hey means of a sinkinge fomb, or oher altomatior method, within a period having a mome or lese definite relation to the life of the asset ereated out of the loan, amb surh ammal provision for repayment almost whond exepption operates immediately upon the horrowing of the monery and is dargerlaganst the ammal rate or assesment feried by the lowal anthority. In the rase of a loan ratised to

etc., the annual redemption charges, as well as the interest upon the loan, are charged against the profits of the undertaking, and any deficiency is made good out of the amual rate or assessment levied upon the whole of the community.

The foregoing remarks will sufficiently explain the terms used in the book, but if fuller details are required the reader is referred to the Financial Appendix to the Report of the Commission (Vol. II, Part II, p. 62S), prepared by Mir. James and myself.
E. II. T.

Manchester (Eng.),
November, 191.3.
SUMMARY OF SECTIONS.
I. Mathematical Principles.
Chapters II to N 19
II. The Methods of Repayment of Loan Debt. Chapters NI to NIII 107
III. The Annual Instalment.
Chapters XIV to XXI 143
IV. The Annual Increment.
Chapters XXII to XŇII 257
V. The Date of Borrowing.
Chapters NXVIII to XXX $3+3$
VI. The Life of the Asset and its Relation to the Redemption Period.
Chapter XXXI 375
VII. The Equation of the Period of Repayment.Chapter NXXII357
VIII. The Equation of the Incidence of Taxation.
Chapters NXXIII to NXXV $+07$

CONTENTS.

```
Chas. Pagil
    I. Introduction
- 1
```


SECTION I.

 Mathematical Principles.char.
il. Logarithins - - - - . - - . . - 21
III. Smple and Compound Interist - - - - - - 28

Componnd interest a geometrical progression.
Derivation of the formula,

$$
A=P R^{x}
$$

relating to compomed interest, from the algebraical formula,

$$
l=(t)^{n-1}
$$

relating to a geometrical progression. IExplanation of terms. Difference between the anonnt of fir and of fir per annmun, at the end of one year. "Present Value" compared with " l'ractical Discount."
IV. Compuend Interest as Applei to a Sum of Money - - 3^{6} Table I. The amonnt of fi in any number of years. The formma, $A=l^{\prime} R N$ and rales deduced therefrom. Calenlation by the arithmetical method. Compilation of tables. Thoman's method and formula. Author's Standard Calculation form, No. r.
V. Compouni Interest as Applied to a Sum of Money (contd.) - 42 Table 1I. The present value of fir due at the end of any number of years.

$$
\mathrm{P}=\frac{\Lambda}{\mathrm{R}^{\mathrm{x}}}
$$

Derivation of the formula and rules deduced therefrom. Tables of ratios and logs. of R , and r; calculations for periods other than years. Thoman's method and formula. Author's Standard Calculation form, No. 2.
CHAP. PIGE
VI. Compocnil Interest as Apphel to an Annual or other
Periodic liyinent 50
Table III. The amount of Ei per annmm in any number of years.

$$
\mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)
$$

Derivation of the formula and rules deduced therefrom. Thoman's metliod and formnla. Anthor's Standard Calculation form, No. 3 .
VII. Compouni Interest as Aplifin to an Anvual or other PERIODIC PAYMENT (contd.) - \quad - \quad - -62
Table 1V. The present valne of $£ 1$ per annunn for any number of years.

$$
\mathrm{P}=\mathrm{A}_{y}\binom{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{x}},}
$$

Incrivation of the formula and rules deduced therefrom. Thoman's method and formula. Author's Standard Calcu-

- lation form, No. 4.

Table V'. The annuity which 太i will purchase for any number of years, or of which fi is the present value.

$$
\mathrm{A} y=\mathrm{P}\left(\frac{\mathrm{R}^{\mathrm{s}} r}{\mathrm{R}^{\mathrm{s}}-1}\right)
$$

Derivation of the formula and rules dednced therefrom. 'Thoman's method and formula. Anthor's Standard Calculation form, No. 5.

 Dixplanation of the symbols used by Thomant, and their relation 20 the abose dables and formmata.

SECTION II.

The Methods of Repayment of Loan Debt.

CHAP.
PAGE

XI. THE RepayMENT OF THE L, OAN DEBT OF LOCA1, AUTHORITHES

ANb COMMERCIA1, ANO FINANCIAL, UNIERTAKINGS - - IOQ
Alternative methods allowed by the Public Health Act, 885 , and other Acts. Comparison of methods as regards the actual repayment to the lender and the annnal charge against revemue or rate.

The Instamant Method, by equal ammal instalments of principal repaid to the lender. Statement showing the final repayment of the loan.
XII. The Repayinent of the Lohn Debt of local Authorities, ETC. (contd.) - - - - - - - - IIt

The Annuity Methon, by an equal anmaal instalment of principal and interest combined, repayable to the lender. Methods of calculation. Formulee and rules deduced therefrom. Statement showing the final repayment of the loan. Comparison with the sinking fund instalment, and the equal annual instalment of principal only.
dili. The Repayment of the Lohn Debt of Local Authorities, ETC. (contd.) - - - \quad - $-\quad$ - 126

The Sinking Fund Method, by setting aside and accuminlating an equal annual instalment to provide the principal only at the end of the redemption period.
I. The Accumulating Sinking Fund. Methods of calculation. Formula and rinles deduced therefrom. Statement showing the final repayment of the loan.
Author's Standard Calculation form, No. 3 x .
2. The Non-accumblating Sinking Fund, compared witl the instalment and accumnlating sinking fund methods. Statement showing the final repayment of the loan. Statement showing the eomparison between the three methods already described.

SECTION III．

The Annual Instalment．

CHAP． PAGE
ハIJ．Sinking Fund Problems in general，relating to： I 45
r．The amount in the fund．
2．The rate per cent，
（a）of income to be receired upon the present investments representing the fund．
（b）the future rate of accumulation．
3．The redemption period．
4．The rate per cent．and the redemption period in combination．
Jefinition and explanation of the terms＂present invest－ ments＂and＂annnal increment．＂
NV．Sinking Fund l＇roblems relating to the amount in the
FuNd．A deficienci in the fund－－－－－Ijf
Calculation of a typical fund to be used as an example． How a deficiency may arise，and how it may be ascertained． Summary of the methods of making the adjustment in the annnal instalment．

Xlif．Sinking Fevd Problems relating to the amount in the FUND．A Deficiexcl in the fend（contd．）－－－ 17 I

Variation I ．To be corrected by an additional annual instalment to be set aside during the whole of the mexpired portion of the repayment period．

Variation 2．To be corrected by an additional annnal instalment to be set aside during the earlier part only of the mnexpired portion of the repayment period．
 FUND（contd．）．A suRPlés in the meni－－－－i 86

Variation 1．Arising in consequence of an excessive past acenmulation of the innud．

Variation 2．Arising in consequence of the payment into the find of the proceeds of sale of part of the assets reprecenting the security or the loan，or a realised profit mone the sate of an investment representing the fund．

A surplus in the fund of a commercial or financial undertaking, arising on the withdrawal of part of the loan from the operation of the fund, owing to the conversion of such part of the loan into ordinary share capital or stock of the undertaking.

Variation 3. In which the original amual instalment was found by calculation based upon a specified period of repayment and rate of accumulation.

Variation 4. In which the original annual instalment is a stated sum, and is not based, except in a general way, upon any period of repayment or rate of accumnlation.
XIX. Sinking Fund Problems relating to tile rate per cent. OF INCOME UPON T11E PRESENT INVESTMENTS REPRESENTING The AMOUNT $1 N$ The FUND ; AN1) AlSO The future rate of accumulation of the fuxd. - - - - - - 223

Variation A. In which there is a variation in the rate of accumulation without any variation in the rate of incone upon the present investments, or in the period of repayment.
A. Sinking Fund Probleas redating to the rates per cent. OF INCOME AND ACCUMLLATION (contd.) - - - - 236

Variation B. In which there is a variation in the rate of income upon the present investments withont any variation in the rate of accumulation, or in the period of repayment. The subject is further considered in Chapter XXVII.

NXI. Sinking; Fund Problems rehating; to the rates fer cent. OE INCOME AND ACCUMUlation (contd.) - - - -247

Variation C. In which there is a variation in the rate of accumulation, and also in the rate of income upon the present insestments, but withont any variation in the period of repayment.

Section IV.

The Annual Increment.

CHAP.						
SXII.	Sinking Funil Problems relating to the rate per cent.					

The above variations further considered, nanely, a variation in the rate of accumnlation with or without a variation in the rate of income upon the present investments, but withont any variation in the period of repayment. Comparison of the results already obtained in terms of the annnual instalnent, with those obtained by means of the annual increment, and the varying rates of acemnulation.
XXIII. Sinking Funi I'roblems helating to the rate per cent. OF accumulation (contd.) - - - - - - 277 Derivation of a rule and formula relating to a variation in the rate per cent. of accumulation based npon the foregoing resints, by the annnal increment (ratio) method.

XAIV. Sinking fiund Problems relating to tile redemption PERIOI - - - - - - - . -283
The deductive method of finding the annended annnal instalnent due to a variation in the period only. The annnal increment (ratio) method.

SXV. SiNkiNg Fund Problems relating to the redenption rerion (contd.) - - - - - - - - 295 Derivation of a rule and formula relating to a variation in the period of repayment based npon the foregoing results, by the annnal inerement (ratio) method.
 WF NCCLMLIATION ANO THE REDEMPTON PEREOD IN combinatus - \quad - \quad - \quad - \quad - \quad - \quad -
The dednetive method of ascertaining the anmended annmal instalment (lue to a rariation in both the above factors in combination.
Derivation of a rule and fomma relating to a dual variation of this nature based upon the foregoing results, by the annmal increment (ratio) method.

NXVII. SINKING FUNI PROBIEMS RELATING TO THE RATE PER CENT. OF INCOME UPON THE PRESENT INVESTMENTS REPRESENTING THE FUND - $\quad-\quad$ - $\quad-\quad-\quad-322$ (In continnation of Chapter $X X$) but in which the rate of inconne yielded by such investments is not uniform during the whole of the unexpired portion of the repaynnent period.
I. In which the future variation in the rate of incone is known, and is definite both as to time and anonnt.
2. In which the future variation in the rate of incone is anticipated, but is mncertain botlo as to tince and annount.

SECTION V.

The date of Borrowing, and its relation to the Redemption Period.

WITHOUT ANY COMPLACITIUN AS REGARIS THE LAFE OR DURATION OF CONTINUING UTHIITY OF THE ASSET CREATED OUT

OF TIIE LOAN.

NXVIII. IのAN BORROWED oIVER SEVERAL VEARS IN ONE SUM IN EACH YEAR, EACH YEAR'S BORROWINGS BEING REPASABIE IN A PRESCRIBE1) PERIOD FROM THE IATES OF BORROW'1NG - 345
I. By nneans of one sinking fund only.
2. By separate sinking funds for each year's borrowings.
XXIX. IGOAN BORROWED OIER SEVERAL YEARS IN ONE SUM IN EACII YEAR, REPAYABLE IN ONE SUM ON A CERTAIN SPECLFIED DATE 354
i. Where the date of repayment is known at the time the money is borrowed.
2. Where the date of repayment is fixed after the sinking fund has been in operation for a number of years, and an adjustment of the fund is required.

SXX. IGAN bORROWED iN ONE OR MORE YEARS, IN TARYING AMOUNTS AND AT VARIOUS DITES IN EACH VEAR, AND IT IS REQUIRED THAT TIE REVENUE OR RATE ACUOUNT OF EACII YEAR SHALL BE CHARCEL, WITI A PROPORTIONATE PART OF THE ANNUIL, SINKING FUNI 1NSTALMENT - - - 365

SECTION VI.

CHAP. PAGE
XXXI. The Life of the Asset, and its relation to the Redemption Period - 377
SECTION VII.XXXII. The Equation of the Period of Repayment
OF LOANS REPAYABLE AT VARIOUS IATES, WHICH AREREQUIRED TO BE REDEEAED ON ONE UNIFORM DATE - 3SG

1. Where the loans are anthorised in respect of ontlays ofvarying character, each having a different life or period ofcontinuing utility and consequent repayment.
2. Where the necessity to find the equated period of repayment arises on the consolidation of existing loans.

The arithmetical method of finding the equated period known as the "equation of payments." The trate or mathematieal method. The efror in the generally adopted arithmetical method.

SECTION VIII.

The Equation of the Incidence of Taxation.

XXXIV. The Annuar, Instalaifn - - - - . - - 418

The various methods of adjusting the annual charges to revenne or rate during the equated period in proportion to the life or duration of continuing utility of the asset created out of the loan, viz. :-

By charging the revenue or rate account of each year of the equated period with the annual instalment chargeable against each year before equation, and in addition thereto a supplementary annual instalment :-
(a) to be spread equally over the equated petiod; or
(b) to be proportionate year by year to the annual instalmeuts before equation.
fixy. Interest upon the Loan - - - - - - - 436
The method of adjusting the annual interest charges to revenue or rate dnring the equated period in proportion to the life or duration of continuing utility of the asset created out of the loan :-

By charging the revenne or rate account of each year of the equated period with the annual amount of interest payable before equation, and in addition thereto a supplementary annual amount proportionate year by year to the annital interest charges before equation. A general Summary of the results obtained in Chapters XXXIII, XXXIV, and XXXV, illustrated by diagrams.

Introduction

CHAPTER I.

INTRODUCTION.

This book is the outcome of many years' professional work in connection with the accounts of mumicipal corporations, other local authorities, and privately owned commercial and financial undertakings. It deals only with the loan debt of such public authorities and private undertakings, and includes, in addition to the actual borrowing and repayment of the loan, the numerous problems which arise in connection with the Sinking Fund, relating to the amount in the fund, the rate of accumulation, and the period of repayment. The concluding sections contain chapers upon, (1) the relation between the life of the asset and the period of repayment: (\mathcal{Z}) the methods of finding the equated period of repayment : and (3) the equation of the incidence of taxation after the equation of the period, both as regards the annual instalment and interest upon the loan. In the last three chapters this difficult subject is treated in an exhanstive manner.

Subert Matter. The book knes not pretend, in any way, to be a treatise upon the law relating to the loan debt of local authorities, or to give full particulars of the various statutory obligations, as regards repayment, imposed by Parliament; nor does it include a full statement of the general practice of Parliament and the government departments having control of such matters. All such statutory obligations are of a rery variable nature and are contained in many general and special Acts of Parliament and provisional orders of the Local Government Board. The general practice cannot be said to be based upon any well-defined principles, but it should be stated that the Local Govermment Board endearours, as far as it is emporered, to impose a uniform system, especially as to the periods to be allowed for the repayment of loans raised for public works having longer or shorter periods of duration or continuing utility.

Although the actual practice varies considerably in detail, the methorls to be adopted in the solution of the various problems all follow certain well-defined mathematical rules; consequently the primary object is to demonstrate briefly the mathematical principles involved and afterwards to apply such
principles to a number of typical examples. As between the mathematical and practical sides of the subject, preference has heen, and must necessarily be, given to the mathematical portion, because this is definite, and may be exactly stated. The practical variations from the ideal mathematical conditions are so numerous that only typical examples have been considered, although every effort has been made to include all the principal problems which are likely to arise.

Mathematical Priveiples. Since all problems, relating to the future redemption or reparment of a present loan, to be spread over a period of years, involve questions of compound interest, it is first necessary to investigate the mathematical principles governing the ammal or other periodic accumulation of a present sum of moner, and also of a sum of money parable or reccivable at the end of each of a number of equal and definitely recurring periods of time. All such problems follow the algebraical rule relating to a geometrical progression, as distinguished from the rule relating to an arithmetical progression which concems only simple interest. The primary object therefore is to convert the simple algebraical formula relating to a geometrical progression into a formula which may be applied to the subject matter of this book, namely, compound interest. Simple interest is purely a matter of arithmetical calculation and does not arise in any way in the problems to be disenssed. On the other hand, compound interest involves a mathematical method of calculation and affects all problems which will be hereafter comsidered.

The algebrateal formula relating to any geometrical progression, as regards the last and first terms in any series of numbers is:-

$$
l=l_{1}, n-1
$$

and this formula mas be conserted into a standard formula relating to the accummation of a sum of money now in hand, namely:-

$$
\Lambda=\mathrm{P}^{\prime} \mathrm{R}^{\mathrm{N}}
$$

as deseribed in Chapter III. The derivation of the formula relating to the aceumulation of an amuity or other periodie payment, namely:-

$$
M=\Lambda_{!}\left(\frac{R^{N}-1}{r}\right)
$$

is Wescribed in Chapter VI.

Formele ind Symbols. The stmbols adopted by the author differ somewhat from those given in the books on algebra, and in other mathematical works. They have, however, been chosen after much consideration in order to aftord some indication of the factors they represent. The very full treatment which is given to the varions formule is due to the fact that they are indispensable if a calculation has to be made at any rate per cent. not included in the published tables of compound interest. A detailed explanation of the symbols and formule is contained in Chapter X, dealing with the standard calculation forms prepared by the author.

Logamimas. Thronghout the book, the method of calculation is entirely by logarithms, since any attempt to arrive at the results by arithmetical methorls would involve a serious waste of time, and a greater liability to errors in computation. The use of logarithms is fully explained in the usual arithmetical works, and also in the introduction to most of the published tables of logarithms, but a short chapter (No. II) has been included in order to make the book self-contained. There is not ancthing at all difficult in the use of a table of logs.: which is merely a very much neglected "ready-reckoner." There are several good tables giving seven-figure logarithms of the numbers from 1 to 108000 .

Mathenatical Thimes. There are many published tables of compound interest, which may be used to facilitate the various calculations, and which may be divided into three groups, namely:-
(1) Tables giving the actual calues of $£ 1$, and of $£ 1$ per annum, for various periods at stated rates per cent. per ammum. These tables are vahable in proportion to the number of rates per cent. for which the actual ralues are giren. In using all such tables, a table of logs. is also required. In England, the one most generally used is known as Inwood's Tables (?lst * edition, 1880), and the new edition by Schooling (1899).*
(2) Tables in which the actual ralues are not given, but which contain their logarithmic equicalents. The talles of M. Fédor Thoman are of this trpe, and they are especially valuable, because they are worked out for many intermediate rates per cent. not given in Inwood's and other similar tables of compound interest, and also because they enable one to

[^0]dispense with a table of logs., except as regards the actual sums of money inrolyed in the calculation. They are particularly useful because all ralues are reduced to two factors only, namely, R^{N}, and a^{n}, by various combinations of which all the calculations may be made. The derivation and use of these tables are fully explained in Chapter IX.
(:3) Tables worked out on the "ready-rcckoner" principle, giving, for example, the sinking fund instalments, or the equal annual instalments of principal and interest combined, for $£ 1$, and multiples of ± 1, for varions periods of years, at various rates per cent. Such tables may be very useful to some, but they have not any educational ralue whaterer, and it is doubtful if ther effect any actual saring of time when compared with the other trpes of tables, especially Thomans, which are, when possible, always used by the author. The practical value of tables of this kind is limited by the number of rates per cent. actually worked out in detail, and the same applies to Inwood's and Thoman's tables.

If a problem be required to be worked out at any rate per cent. not given in any published table, such problem is impossible of solution by anyone not acpuainted with the mathematical principles upon which all such tahles are based. The object throughout has been to reduce these mathematical principles to the rery simplest form, and to give such minute instructions, and to provide surli standard forms of calculation, that anyone acquainted with the ordinary rules of arithmetic, and the use of a table of logs., may obtain the result required.
standard (abevation Forms. A pecial feature of the book is the series of standard forms, which have been specially prepared ley the author, and be means of which all the calculations in the book have been made. They are fully described in Chapter X. The adrantage of using these forms is that one or all of the three methods given on each form may he adopted : and it is genemally adrisable to make the ealculation in two wass in mrder to prove the accuracy of the result amb also to aroid any possible error due to a misprint in the mathematieal table need. The three methods shown in each form are:

> A. he the mathematical formula.
> 13. he the pulbished tables of compound interest.
> ('. he Thomans Lorarithmir Tahles.
and in all cares the calculations are made begarithms. The arithmetical mothor, based upon the published tables, is subject
to error, and is therefore unreliable. A supply of these forms is invaluable to anyone requiring to make many calculations of this nature, owing to their uniformity and also because they aroid any reference as to the particular method to be adopted. The formulx, after a time, suggest the method. As a general rule the author uses, in the first instance, method C, by Thoman's Tables, as being the shorter, and also because these tables include a greater number of fractional rates per cent., than the ordinary published tables of compound interest. The factors being expressed in their log. values, a reference to the log. table is saved. The result is generally proved by logs. by method B, using the ordinary published tables of compound interest. In rery few cases is it necessary to use method Λ, by formula, when the rate per cent, is worked out in Thoman's or other tables, but where the calculation is required at a rate per cent. not given in either table, method A, by formmla, is the only one avalable. It is therefore necessary to become fully accpuainted with the method loy formula, and to use it to prove the result obtained by Thoman's method C, where it cannot be proved by method B, owing to the fact that the particular rate per cent. is not included in the table available. When it is required to ascertain the number of years with accuracy, the use of the formula is imperatise, and the same applies to problems in which the rate per cent. is required. Very minute instructions as to the use of the forms are given in Chapter X, which contains also ten standard forms by which to ascertain the rate per cent. or the number of years.

Pro forma Accounts of sinking Funds. Throughout the book the author has repeatedly laid great stress upou the supreme importance of following up the original calculation of the annual instalment by at once preparing a pro forma account showing year by year, how the fund should accumnlate until maturity. To make these accounts fully answer their object they should be copied into a book kept solely for the purpose of preserving a permanent record of all such accounts, and not in the current ledger. This course will save endless trouble in future years. If any adjustment be made in the fund at any future time an amended pro forma account should be prepared and a reference made to the original account. If a copy of each calculation be forwarded to the Local Govermment Board it will materially assist the officials and simplify, if it does not entirely aroid, much subsequent correspondence between the Board and the local authority. Several pro forma accounts
have been prepared relating to examples gireu in the book, not only with regard to a normal sinking fund, but also as to an adjustment of the fund due to a variation in the period of reparment, the rate of accumulation and the income from investments. It is in such cases of adjustment that the prorision of an account of this nature, showing the effect of the various changes until maturity, becomes particularly valuable.

The Reparmext of Loax Debt. Having in the earlier chapters described the methods of ascertaining the working formule and rules relating to the various classes of calculations, actual problems are next considered, begimning with the repayment of the loan debt of local authorities, taking as a basis the three alternative methods laid down in Sec. $23 \pm$ of the Public Health Act, 1875. This section is a very concise statement of such methods of reparment, especially when supplemented by the non-accumulating sinking fund first mentioned in the model clauses inserted by the Local Government Board in provisional orders about the year 1893 and which have since been applied to many special Acts. The effects of the methods above mentioned are then fully discussed both as regards the lender and the rate or revenue account of the undertaking, illustrated by examples worked out in detail.

These three alteruative methods apply equally to the repayment of the debt of privately owned commercial and financial undertakings, although the conditions in such cases are much more elastic and rariable than is the case with local authorities. This is fully discussed in Chapter XIII.

Probiems rfatixg to sinfiyg Fexds. The remainder of the book in occupied by the discussion of actual problems relating to sinking funds proper, since the instalment and annuity methods do not involve the aremmutation of ans such fund but provide for the artual periodical reparment to the lender. Very few (omplications are likely to arise in the case of the instahment metherl, and any variations in the anuuty method will follow the general rules as to a simple annuity. Such problems coneen the amount in the fund at any time, the rate of acumulation of the fund, the rate of income to be received upon the present investments representing the fund, the period of reparment, or a combination of any or all of these factors.

The amonnt in the fund at any time may be the correct calculated amonnt which should stand to the credit of the fmud, or may vary therefrom, resulting in a deficiency or a surphes.

A deficiency in the fund may be due to a fall in value, or a loss upon the realisation, of an investment representing the fund, but may also be caused by the accumulation of many minor past deficiencies in the annual income received from the investments; and, although it does not now often occur, may be due to a deficiency in the anmal instalments set aside in past years. Cases have occurred, within the knowledge of the author, where the provision of a sinking fund in relation to an old loan has been entirely overlooked.

A surplus in the fund may arise in several ways; either by an increased rate of accumulation or by the payment into the fund of the proceeds of sale of part of the assets representing the security for the loan, or a realised profit upon the sale of an investment. In the ease of commercial and financial undertakings, a surplus may arise upon the withdrawal of part of the loan from the operation of the fund. Two typical examples of this nature are very fully discussed in Chapter XVIII.

In all such problems it is first necessary to ascertain the actual position of the fund at the time the adjustment is required to be made, and this may be expressed in terms of the present investments and the future annual increment to accrue to the fund. The problem may be simplified by treating, as one factor, the " Ammal Increment " of the fund which consists of the annual instalment and the income to be received from the present investments, whether the rate per cent. of such income is the same as the rate of accumulation or is different. Any variation in such rates may continue during the whole of the unexpired portion of the repayment period or for a portion of the period only. The term "Annual Increment" is fully diseussed in Chapters XIV. and XXII.

The principal canses giving rise to a necessity to make an adjustment of the fund are variations in the rates per cent. of accumulation or of income upon the present investments and variations in the period of repayment, or a combination of both rate per cent. and period. Of the two causes a variation in either of the rates per cent. is the most probable for many obvious reasons, and it is very important that this should be carefully observed and immediately corrected, in order to avoid the necessity at some future time of haring to make a substantial adjustment due to the accumulation of small errors. The longer a deficiency is allowed to accumulate the greater becomes the resulting burden imposed upon the correspondingly reduced number of the final years of the redemption period.

Calculation of a Typicil Sinitige Fuxd. In order to provide an example which may be used to illustrate the whole of the above problems, Chapter MT, Calculation (XV) 1, shows the method of ascertaining the annual instalment relating to a loan of $£ 26,495$ reparable in 25 years with an assumed rate of accumulation of $: \frac{1}{2}$ per cent. per annum. (Author's standard calculation form, No. 3x.)

Methods of Adsestment. Throughout the book the fact that the particular method adopted is not the most direct one has been left entirely out of consideration, provided it has an educational value. In all cases, however, the shorter and more direct method has been shown and the results by the two methods compared. In the case of the adjustment due to a deficiency in the fund, in Chapter IV., four methods are given, which are summarised at the head of that chapter. The adjustment of a deficiency has been treated in this exhaustive manner, far berond its relative importance, in order to present to the student a practical example illustrating the interdependence of the present value and future amount of ± 1 and of $£ 1$ per annum. In the above example, as well as in later ones, a statement has been prepared showing the various stages by which the amended annual instalment is ascertained, and this is followed in all cases by a further statement showing the final reparment of the loan by the operation of the sinking fund and the amended annual instalment rendered necessary by the variation in the original conditions.

Wherever required, the method has been reduced to a series of stages briefly stated giving a reference to the individual calculations. In the earlier parts of the book the actual details of the calculations are given in full or in the Appendix, but in later chapters only the final results are giren owing to consideration of space and also becanse similar examples have previously been worked out.

The Ancul Incremext Methods. The adjustments next considered are those due to a variation in the rate per cent. cither of accumulation or income from insestments, a variation in the period of repayment, or a combination of the two factors of rate per cent, and period. Is in the case of a deficiencer or a surplus in the fund, the amended annual instahment is first ascertained by the deductive method fully described in Chapter XIX, which is hased upon the consideration of the whole of the factors governing the fund. The same result is also shown ly the ammal increment (balance of loan) method
fully deseribed in Chapter XXII. In the case, however, of a variation in the rate of acrumulation accompanied by a rariation in the rate of income from investments the latter factor is eliminated by merging it in the annual increment and dealing only with that anmal sum. The varying rate of acemmation then becomes the only outstanding factor, and it is therefore possible to deduce a method which has been called "the amual increment (ratio) method," depending upon the ratio existing between the original and amended rates of aecumulation. The whole of the calculations by the annual increment (ratio) method relating to a variation in the rate per cent. only, and also to a variation of the period of repayment only, bear a strong family likeness and are capable of being reduced to simple rules and formulx, and this has been shown in detail. Havinge in Chapter XXII diseussed a combined variation in both factors of rate per cent. and period and having again deduced a formula therefrom the whole of the formula so obtained have been reduced to simple rules.

The Dates of Borrowing anio Repaymext. Ep to this point all possible causes of the adjustment of a sinking fund have been exhausted, but the subject has been treated from the purely mathematical or actuarial standpoint, namely, that all loans are borrowed in one sum at the beginning of the financial year and that the ammal instalments are set aside at the end of such year. The actual practical conditions are next dealt with, namely, that the loan is, as a rule, borrowed over a period of years, in various amounts and at rarious dates in any year, and is repayable sometimes orer a period of years, but often on a given date. The subject is further complicated by the fact that varying periods are allowed for the reparment of loans sanctioned for different classes of outlay depenting upon the life, or duration of contimuing utility, of the individual works. And this varying period of repayment may be, and often is, complicated by practical variations in the dates of borrowing. This part of the subjert has therefore been divided, by dealing first with loans authorised for outlay of one character only where the problem is not complicated by different periods of repayment due to the life of the asset. The problems relating to the dates of borrowing are sub-divided as follows:-
(a) Where the loan is borrowed orer several pears, in one sum in each year, and is repayable orer a term of years in a prescribed period from the several dates of borrowing.

Chapter IXVIII.
(b) Where the loan is borrowed over several years, in one sum in eard year, and is reparable in one sum on a certain specified date.

Chapter XXIX.
(c) Where the loan is horrowed in one or more years in varying amounts and at varying dates in each year and is repayable in one sum on a certain specified date, and it is further reguired that the revenue or rate account of each rear of borrowing shall be charged with a proportionate part of the annual sinking fund instalment. Chapter IXX.
In the case of loans borrowed over a series of years, where the repayment is spread over a period equal to the extended rears of borrowing, the amounts borrowed in each year may be treated as individual loans, and the only points to be considered are administrative, and relate to the number of sinking funds, namely, whether it is preferable to keep a separate sinking fund for each year's borrowings or to keep only one fund for the total loan. This is fully discussed in Chapter XXVIII, and, as there stated, "amot be applied to the redemption of stock.

In the case of loans borrowed over a period of years, raised by the issue of stock redeemable on a fixed date the several sinking fund instalments, although commencing at various dates, yet mature on the same date. The encuiry is still confined to loans in respect of outlay of one nature and having a miform period of repayment. This class has been subdivided into two groups, and is fully discussed in Chapter SXIX.

1. Where the date of reparment is known at the time the moner is borrowed.
2. Where the date of repayment is fixed after the sinking fund has been in operation for a number of rears, and an adjustment becomes necessary.
The apportiomment of a part of a full year's instalment to be charged against the revenue or rate accoment of the rear in which the money is borrowed is treated fully in Chapter SXX. As a rule, this may be, and gemerally is, ignored: but the particular cireumstances in commection with a large loan may render it advisable to make a charge of this mature. There are soreral interesting fratures in the methor which is illustrated by the example in Chapter $X X X$, and which mas be compared with the instalments to be set aside when the year of borrowing is not charged with any such proportional annual instalment, as in Chapter XXIX. Stated briafly, the effect is to ante-date
the charge to resenue or rate and to impose an increased burden upon the years of borrowing. The thind year of the sinking fund period is charged with the same amount under each method because the repayment period is assumed to commence at the conclusion of the first year of borrowing. such increased annual burlen during the earlier years operates by way of relief to the remainder of the repayment period, but only to a slight extent. This problem furnishes another example of an adjustment being recfuired in consequence of irregular contributions to the fund during the earlier years.

The Life of the Asset, and the Equation of the Period of Reparmext. Haring dealt with problems relating solely to the adjustment of the sinking fund, owing to causes of a purely actuarial or mathematical nature, there is still to be considered the more difficult subject of the variation in the periods allowed for the redemption of loans for large public works, where each component part of the outlay has a different life or duration of continuing utility. This rariation in the redemption period has not any disturbing effect when the lom is authorised for one class of outlay only, or is in respect of several classes of outlay, each haring the same period of repayment. But loans are now often authorised for large public works which include rarious classes of outlay, each class having its own redemption period, based upon its duration of continuing utility, and also forming a variable proportion of the total cost, and it is required that the total loan shall he repaid on the same date. In such cases it beromes neressary to ascertain the equated period of repayment. The same necessity arises on the consolidation of existing loans reparable at various future dates, but in such cases the problem is further complicated by the amounts then standing to the credit of the individual sinking funds, the value of the investments representing each fund, the rate of income arising therefrom, and also the incidence of the present redemption charges upon different departments of the local authority. It may be stated generally that the problem of the equation of the period of repayment applies equally to all such cases and that in fixing the equated date of reparment there are two interests to be considered, namely, the loanholder, who looks only for the due payment of his principal, and the annual interest thereon, and the individual ratepayer who is required to provide his proper portion of the annual amount whirh Parliament, or the government department concerned, has laid down in principle as the annual wastage of the assets created
out of the loan. This ammal wastage of the asset is imported into the problem owing to the fact that the period allowed for the repayment of the loan is based upon the life, or duration of continuing utility, of the asset. As regards the loanholder, the problem is a simple one. In all cases he will be repaid, at some future date, the amount which he originally adranced to the local authority, and, in addition, he will receive until the reparment of the loan, interest at the rate per cent. originally fixed. The only question remaining therefore, so far as he is concerned, is the relation between the rate of interest agreed to be paid by the lowal authority and the rate per cent. obtainable upon the open market when the loan is proposed to lee repaid. This arises only upon the consolidation of existing loans repayable at fixed future dates where the effect of comsolidation is to rary, and generally to anticipate, the date at which the loan was originally repayable. As regards the loanholder, therefore, the most important factor is the period during which he will continue to receive interest upon the loan at the present rate payable by the local authority. If the present rate so payable be a high one and the current rate, to be obtained upon the open market, at the time when the local authority propose to repay the loan, be expeeted to be lower, the loanholder will naturally object to any variation of the original conditions, ant, per contra, he will gladly accept an cartier repayment of the loan if thereby he may expect to obtain a higher rate of interest upon his investment. Comsequently the loanholder must be consulted, and his consent obtained, before any change be made in the original conditions upon the consolidation of loans. This uncertainty as to the future rate of interest is one of the reasons why Panliament has, for some rears past, refused to sanction the issue of an inredermable stockin consequence of the difficulty in applying the amount in the sinking fund to its proper purpose. The stock can thus only be redeemed by purchase upon the open market, and the premium paid upon such oecasions camot be taken out of the sinking fund, hat must be charged against the revenue or rate accoment of the current year.

The ratepayer, on the contraly, is in a very different position, in that the monery paid to the lomholder by way of interest upen the loan, and the ammal smms set aside out of revemue or rate to redeem the debt are paid hy him. But the ratepayer eomas and goos, whilst the loanholder goos on for ever, or at heast matil his loan is repaid. The lommolder natumally eomsiders the vahue of his investment and the interest
to be derived therefrom, and the state of the money market both at the present time and in the future are to him very important factors. The ratepayer, on the contrary, considers only the annual amount paid by him by way of rate, and compound interest is to him a negligible, if not an mknown term. In addition, he is never consulted individually as to the annual amount of rate which he may be called upon to pay. He may be invited to attend a meeting called to approve or disapprove of a Bill to be laid before Parliament to authorise the spending of moner on capital account, but he is generally ignorant of the matter, and is too busy trying to earn the amount he has to pay by way of rate, to attend any such meetings. The result is that the final adjustment is left entirely to the officials of the local authority subject only to the control of Parliament or the Local Government Board, and the next step therefore is to inrestigate the methods generally adopted in order to arrive at the equated period of repayment and the consequent amended annual sinking fund instalment to be charged to revenue or rate.

Before doing so, however, it should be pointed out that any necessity to fix the equated period did not arise to any great extent until it became the common practice of locat authorities to issue stock or to consolidate existing loans repayable at various dates. Prior to that time, any variation in the periods of repayment allowed for different classes of outlay was met by keeping separate funds for each amount of loan having the same reparment period and allowing each fund to mature at the due date. The relation between the life of the asset and the consequent amual loan charge upon the reveune or rate accounts of successive years is fully discussed in Chapter XXXII, where it is found that the variation in the periods of repayment allowed is not of itself a cause of an equation being required, which depends upon a combination of two factors, namely, the rariable period of repayment and the obligation to repay various loans on one instead of on different dates. The prohlem arising on the consolidation of storks or loans repayable at rarious dates is exactly similar in principle although arising in a somewhat different manner, but is further complicated by the amount in the fund at the time of making the adjustment.

The Equation of the Period of Repaymext. The equation of the period of reparment has been considered from two points of view, namely, one relating to the method of
ascertaining the equated date and the other to the incidence of the annual burden upon the revenue or rate account. These two points are fully treated in Chapters SXXII, XXXIII and XXXIV. The method generally adopted to find the equated period is the arithmetical one known as the "equation of payments," which is fully described in Chapter XXXII. It is there proved, by two examples worked out in detail, that the equated period as gencrally adopted is not the true equated period and that the effect of adopting it is to extend the period of reparment beyond the true or mathematically equated period. This may not be important in many cases, but may be extremely so in the case of very large loans: and, if it be necessary to make such an adjustment at all, it is surely imperative that the principle upon which it is made is scientifically accurate.

Having described the proper method of finding the true efpated period, Chapter XXXIII is occupied with an examination, illustrated be the actual example used in Chapter XXXII, of the effect of the gemerally alopted practice of fixing the amended amual sinking fund instalment by spreading the burden equally orer the whole of the equated period as if it related to an original loan, reparable in such period, the whole of the loan representing outlay of one character only, having a life or period of utility of that length. The method is a simple one, but is wrong in principle although it has receired the approval of many rears adoption.

If the preliminary stages in the sanction of a loan be carefully reviewed it will be recognised that much thought and care are expended in determining the proper periods to be allowed for the reparment of loans authorised for different classes of outlay. The whole question is still in a transition state, and
 recognised factors being that in future the ammal charges for redemption of the debt shall bear a definite relation to the life of the aseet, with a further extension of the principle, that even in the cane of works of ahmost permanent utility the reparment shall not extend beyond a certain number of years. This latter requirement is to protect the interests of future generations of ratepayers. The relation between the period of reparment and the life or dufation of continuing utility of the asset is imposed in order to cusum that the present generation shall contribute, fear by year, the proper portion of the wastage of the asset. In the case of a boan mised for works comprising outlays of rarying nature with varcing periods of reparment and where separate sinking funds are kept in respect of each class of outlay the
principle is carried ont exactly becanse the earlier years bear the heaviest burden, as they should do, owing to the fact that classes of outlay having a short life will be worn out and require replacing at the end of the period. Under these conditions the loan is entirely repaid by the time the works cease to be of utility or are worn out.

The Equation of the Period of Reparment, and tife Incidence of Taxation. The Annual Instalment. Under the present practice on equation the above principle is departed from, and the burden is spread equally over the equated periorl with a total disregard to any period of utility, and as demonstrated in Chapter IXXIII, there is actually considerable relief to the early years of the equated period as well as an entire removal of any burden during the years of the original period beyond the equated period. As a consequence, the whole of this relief is imposed as an additional burden of considerable magnitude upon the final years of the equated period. There is here a total reversal of the generally accepted principle of spreading the repayment of the loan over the period represented by the life of the asset, accompanied by an alsolute injustice to a section of the ratepayers. By adopting the equated method in general use, as applied to works consisting of various classes of outlay, and also on the consolidation of loans, the present generation relieve themselves of a liability to contribute their fair share of the burden which has been fixed after careful enquiry by Parliament; and thereby impose an extra burden upon future years. In addition they also postpone the repayment of the loans with shorter periods which would have been repaid during the earlier years, and the result is that moner cannot properly be reborrowed to replace assets with a shorter life than the equated period because, when they are worn out, the original loan has not been repaid by means of the sinking fund. A remedy for this state of affairs, so far as the annual instalment only is concerned, is pointed out in Chapter XXXIY, namely, by spreading the burden over the equated period, not by an equal annual instalment, as is the present practice, but by instalments of varying amounts approximating to those originally imposed which were based upon the life of the asset. The principle of this method is to ascertain, first, the amount of loan which will be provided at the end of the equated period, by the accumulation of the annual instalments as originally fixed. The amount of such instalments at the end of the number of years for which they would have been set aside under
the original conditions should be ascertained, and if any of these periods are shorter than the equated period, the amount at the end of such periods should be further accumulated until the ent of the equated period. The difference between the amount of loan so ascertained and the total amount of the loan ultimately repayable will represent the amount to be provided by supplementary annual instalments to be spread over the equated period, due to the fact that the equated period is shorter than the original periods allowed for the reparment of the parts of the loan with longer periods, and that the relief afforded by the equation to these later years should be borne equitably by each year of the equated period. Strictly speaking, such supplementary anumal instalments should be graded in some manner proportionate to the original annual instahments which were based upon the life of the asset, and although the calculation is fully described it is somewhat intricate, and the justice of the case will generally be met by spreading this supplementary annual instalment equally over the equated period.

The Equation of the Period of Reparmext, and the Incidenge of Tanation. Interest dron the Loan. The result of spreading the anmal instalment orer the equated period in proportion to the instalments before equation is shown in Table XXXIY, J, where the original annual instalments are corrected in this manner. On referring to Table XXXIII, B, it will be seen that the effect of equating the period is to throw a heary additional burden upon the final years of the equated period in respect of interest upon the loan. In Chapter XXXIV, a method is described of distributing the redemption charge (the annual instalment) equitably orer the equated period, and in Chapter XXXV a similar course is adopted with regard to the interest upon the loan, with the result shown in Table XXXV, C. By combining the correctly equated ammal instalments shown in Table XXXIV, J, with the correctly equated anmal interest charges shown in Table MXXV, C, the total amual loan charges during the equated period may be ascertained as shown in Table NXXV, F. The subject is so impertant that the result has been shown in graphie form, which is fully described and explained in 'hapter XXXY. In order to express in actual values the effect of the above adjustment both as to the instalment and interest upon the loan it may be stated in terms of ammal rate. It has been given in evidence hefore a Parliamentary Committee that in one
particular case of consolidation of loans the immediate effect of an equation of the period of repayment was a saving of threepence in the $\mathfrak{£}$ in the anmal rate. In this comnection it shomld be remembered that as shown in Table XXXIII, C, there is not any difference in the annual charges for interest upon the loan during the early years of the equated period, before and after equation, but that the decrease is entirely in the annual instalment. Adopting the figure of threepence in the pound as a standard, the result in the present case would be as follows, including the interest upon the loan as well as the annual instalment. The following figures may be converted into American curreney by adopting the equivalent of $2 \frac{1}{2}$ cents to the dollar instearl of 6d. in the pound :-

Original rellemption period.		$\begin{gathered} \text { Decreased rate } \\ \text { ler ث of } \\ \text { Annual Value. } \end{gathered}$	$\begin{aligned} & \text { Increaven rate } \\ & \text { nerer tof } \\ & \text { Anual Value. } \end{aligned}$
Equated period	(5 vears	6.52 pence	
	$\left\{\begin{array}{r} 10 \text { years } \\ 8 \text { years } \end{array}\right.$	$3 \because 0$ pence	11.85 pence
Post-equated period...	6 years	9.76 pence	
	16 years	2.79 pence	

Actual Calculitioxs. The method adopted throughout the book is to insist upon a vary careful scrutiny of the present and future conditions and also of the actuarial and mathematical principles involved. It is very important to prove all ascertained results, both as to method and acensacy of computation, seeing that the actual working out of the fund will oceupy many years and the effect of any present error will be serious if it be allowed to accumulate for any length of time. Mere repetition of the actual calculation is not sufficient. A far preferable method is to work out the operation of the fumd year by year by the arithmetical method as shown in the pro forma accounts ahready referred to. This should be done in all cases without exception before the problem is finally disposed of, but the method is laborious and much time is wasted if the original calculation be wrong. The best way is to prove the result by mathematical means which are much shorter, either by adopting an alternative method, of which many instances are given in the various chapters, or by comparing the amended with the original ammal instabment and accounting for the difference. The actual arithmetical calculation of the pro forma sinking fund aceounts may be left to a junior official, but it will save him considerable time if the senion first ascer-
tains the amount in the fund at the end of every five or ten years by means of the tables or otherwise as described in the various chapters. The whole of the calculations in the book have been verified in this manner and in many cases the method of proof is shown in detail. In cases, however, where it is not shown the verification has been made and is only omitted for want of space.

Section I.
Mathematical Principles.

CHAPTER II.

LOGARITHMS.

Advantage of use of logs. History. Conyection between LOGS. AND ARITIMETICAL AND GEOMETRICAL PROGRESSIONS. Definition. Tarious aritiometical calculations by logs. Logs. OF NUMBERS BETWEFN EVEN MULTIPLES OF 10. Cilaracteristic. Mantissid. Metiodo of mividinig a log. WITII A NEGATIVE CIIARACTERISTIC. METHOD OF DIVIDING ONE LOG. BY ANOTHER.
In a work of this nature, dealing with calculations which are based upon the higher branches of mathematics, it is obvious that the ordinary methods of arithmetic are inaderfuate, and that the aid of logarithms must be insoked even if the fullest use be made of the various published tables of compound interest. There is a limit to the number of rates per cent. which may be included in any table, and it is often required to make a calculation at a rate per cent. not worked out. In such cases it is necessary to revert to the original formulæ, all of which involve raising numbers, containing as many as five or six figures, to the power of the number of years, and the method of continued multiplieation becomes too laborious and uncertain. Even when using the tables it is always necessary to multiply or divide by the numbers (containing five or six figures) given in the tables, and a great saving of time and labour is effected by doing this by the aid of logarithms. But beyond the little time expended in becoming familiar with the method of using such a table, there is not any greater difficulty than in using any ordinary commercial ready reckoner.

This chapter deals only generally with the subject of logarithms, and as the use of this book cannot be complete without a copy of Inwood's or other similar tables, and a reliable table of logs., for a fuller acpuaintance, reference must be made to the introductory chapter which will be found in most log. tables, or else to some good adranced arithmetic.

Logarithms were invented by John Napier, Baron of Merchiston, in Scotland, who published his first work in Edinburgh in 1614. This work contained only the logarithms of natural sines, and are not what are now known as Naperian or hyperbolic logarithms, which are used in mathematical investigations only and are not the logarithms in common use
to-day. Napier died in 1615, and a further work by him, edited by his son, was published in 1619.

The first published table of decimal or common logarithms was published by Hemy Briggs, Professor of Geometry at Gresham College, London, and afterwards Similian Profensor of Geometry at oxford, who visited Napier in 1615. Briggs published his table in 1615 (after the death of Napier), and these logarithms which are in common use to-day are calculated to a base of 10 . Briggs' first tables contained only the logarithms of mumbers from mity to 1,000 to 14 places of decimals. The arithmetical calculation of logarithms as used by Briggs, is a very laborious process, and it was not until 1628 that the table was extended for numbers from unity to 101,000 by lBriggs and Adrian Vlacq, of Gouda, in Holland. But the arithmetical method of Briggs was afterwards superseded by shorter methods depenting upon more advanced mathematical rules, and there are now, as the result of all this labour, very accurate tables which are in universal use, and by means of which rery intricate calculations may be made by rery simple methods.

The principle upon which a logarithm is based is exceerlingly simple, and is founded upon the relation existing between an arithmetical and a geometrical progression. An arithmetical progression is a series of numbers each of which is found by adding a constant number to the previous term in the series, the eonstant number so added being called the ratio. A geometrical progression is a series of numbers each of which is found by multiplying the previous term in the series by a constant number, such constant multiplier being called the ratio. Taking a series of numbers in geometrical progression, with a ratio of 10 , which is the one adopted in the $\mathrm{B}_{\text {rigrean }}$ or decimal or common logarithms, and commeneing the series with unity, the following series is obtained : -

Geometrical

I'rogression, 1. 10. 100. 1,000. 10,000. 100(,000. 1,000,000. Taking another series of numbers in arithmetical progression, with a ratio of 1 , and commencing the series with 0 , the following series is obtained:-
lrilhmelical
Progression, 0. 1. 2. 3. 4. 5. 6.
The above geometrical progression will now be re-written expressing earh term be the power of 10 which it represents, and under it the above arithmetian progression, as follows:-

Geometrical
$\begin{array}{llllllll}\text { Progression, } 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5} & 10^{6}\end{array}$
Arithmetical
Progression, $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 5 \quad 6$
It will be at once noticed that the index of each term in the geometrical progression is the same as the corresponding term in the arithmetical progression.

If it be assumed that the terms in the arithmetical series are the logarithms of the corresponding terms in the first geometrical series, this is exactly what Briggs did when he adopted 10 as the basis of his system, as follows:-

$$
\begin{aligned}
& \text { The log. of } \quad 1 .=10^{0}=0 \\
& 10 .=10^{1}=1 \\
& 100=10^{2}=2 \\
& 1,000=10^{3}=3 \\
& 10,000=10^{4}=t \\
& 100,000=10^{5}=5 \\
& 1,000,000 .=10^{6}=6 \text {, and so on, }
\end{aligned}
$$

and therefrom the definition of a common logarithm may be expressed, viz., the logarith m of a number (to the base 10) is the pouser or inder to which 10 has to be raiscd to produce that number, for example: the logarithm of 10,000 , to the base 10 , is the power or index 4 , to which 10 has to be raised to produce 10,000 , but as 10 is the common base to which all numbers are reduced, the indices, or logarithms, only are required, and the decimal part of this indes is all that is given in the \log. tables.

The logarithms of numbers which are even powers of 10 may be ascertained in the above simple manner, and attention has been drawn to the enormous labour involved in calculating the logarithms of the intermediate mumbers. It is not necessary to enquire deeper into the methods, but only to accept the tables which are the product of that labour. The $\log _{\mathrm{s}}$. which have heen already fomd may be used to illustrate the varions advantages of their use, taking familiar arithmetical calculations, using the actual mombers in the ordinary way, and then repeating the calculations, using the logs. of the numbers instead of the actual numbers, as follows:-
Multiplicatiou:

$$
10 \times 1,000=10,000 . \text { by } \log ., 1+3=4 \text {, or } \log . \quad 10,000
$$

Dirision:

$$
100,000 \div 100=1,000 . \text { by logs., } 5-2=3 \text {, or log. } \quad 1,000
$$

Involution:
$100^{3}=1,000,000$. ḅ̣ $\operatorname{logs.}, 2 \times 3=6$, or $\log .1,000,000$
Erolution:

$$
\begin{equation*}
\sqrt[3]{1,000,000}=\quad 100 . \mathrm{b}_{\mathrm{y}} \log \mathrm{~s} ., 6 \div 3=2, \text { or } \log . \tag{100}
\end{equation*}
$$

It will be seen therefore that by the use of logs.-
Multiplication
Division
Involution
Evolution $\left\{\begin{array}{c}\text { numbers }\end{array}\right)$ necomes $\left\{\begin{array}{c}\text { addition } \\ \text { subtraction } \\ \text { multiphication } \\ \text { division }\end{array}\right) \begin{gathered}\text { of the } \\ \text { respective } \\ \text { logs. }\end{gathered}$
It is a common practice when multiplying together two powers of 10 , such as $(10 \times 1,000)$ to write down 1 , and add 4 cyphers, thus, 10,000 , being the sum of the cyphers in the two numbers. This is actually a logarithmic method of calculation often used by people who do not know anything about logarithms. This is the principle of the algelmaical theory of indices, of which the following is an illustration:-

$$
\begin{array}{ll}
\text { Multiplication: } & x \times x^{3}=r^{(1+3)}=x^{4} \\
\text { Division: } & x^{5} \div x^{2}=x^{(5-2)}=x^{3} \\
\text { Incolution: } & \left(x^{2}\right)^{3}=r^{(2 \times 3)}=x^{r^{6}} \\
\text { Ecolution: } & \sqrt[3]{x^{6}}=x^{(6 \div 3)}=r^{2}
\end{array}
$$

The above operations correspond to the previous illustrations in which the actual powers of 10 were used. In the atgebraical form above, 10 has been replaced by x, with the result that similar $\log s$. are obtained in each set of examples.

Up to this point only whole numbers have been considered which are even multiples of 10 , and of which the logs. are whole numbers above unity, and it has been ascertained that the lograthom of 10 is 1 , that of 100 is $\mathfrak{2}$, and so on for any even power of 10 . It is therefore obvious that the logs. of numbers less than 10 must be fractions. This also applies to numbers between 10 and 100 , the logs. of which must be between 1 and \mathfrak{Z}, and cqually to numbers between any two consecutive powers of 10 , which logs. consist of a whole number and a fractional part, the whole momber being the log. of the next lower power of 10 .

A logarithon then comsists of two parts the integral part, which is ralled the ('haracteristic, and the fractional on deeimal part, which is called the Jontisso, and all loges are expressed in decemals, usually to a places.

The Jantissa (or fractional part) is ahways positive, and is
always the same for any one combination of figures, irrespective of the place of the decimal point.

The Charactcristic represents merely the position of the decimal point in the number which the log. represents, and changes only after passing each power of 10 . The characteristic is in all cases the power to which 10 has to be raised to produce the next lower power of 10 .

The logarithm tables contain only the mantissa part of the logarithm correspouding to the particular combination of figures forming the number of which the \log. is reguired, and since these figures may, according to the position of the decimal point, represent either whole numbers or fractions, the characteristic is positive in the case of a whole number, and negative in the case of a fractional number.

It will be noticed, on referring to the $\log s$. of the powers of 10 , referred to above, that the \log. of $1,000,000$ is 6 , or one less than the number of integral figures (seven) in the number, and similarly with the other powers of 10 , and the rule applies generally, as will be seen by taking the logarithm of the number 26495 .

In the table of logs. opposite 26495 are the figures 423,1639 which is the mantissa of the log. of any number containing the figures 26495 in this order, whether preceded or followed by any number of crphers. The artual position of the decimal point determines the characteristic or integral part of the log. as follows:-

$$
\begin{aligned}
& \text { Log. } 26495=442: 316: 39 \\
& 26495=34231639 \\
& 264 \cdot 95=24231639 \\
& 26495=14231639 \\
& 26495=042: 316: 9 \\
& \because 6495=\overline{1}+29316: 39 \\
& \cdot 026495=242916: 39 \\
& \cdot 00: 6495=342: 316: 39 \text {, and so } 6 \text {. }
\end{aligned}
$$

On romparing the above logs. with the logs, of the powers of 10 previously given, it will be noticed, for instance, that 264.95 (being above 100 and below 1,000) has the characteristic

2 as previously explained, and it will be further noticed that as the decimal point in the original number is mored place by phace to the left (equivalent to dividing the previous umber by 10) the characteristic of the logarithm is reduced by 1. But in the case of 26495 the characteristic becomes 0 , and as the number is further divided ly 10 and the decimal point moved still further to the left, it beromes $-1,-?,-3$, and so on. The characteristic being the only negative part of the log., the minus sign is placed over it instead of to the left.

A glance at the above logs. will show that the characteristic follows two rules, viz. : -
(1) In the crase of numbers greater than unity, the charactoristic is one less than the number of integral figures in the mumber, and is alarays positive: and
(2) In the case of numbers less than wnity, the characteristic is one more than the mamber of cyphers after the decimal puint in the mumber, or is the same mumber as the place from the decimal point whieh the first significant figure occupies; and is aluays negatice.

The usual published tables of common logarithms erive the mantissa for each nomber from unity to 108,000 , and the logs. of all numbers containing is figures may be found at one reference. If the number of whirh the logr is required contains more than 5 figures, the corrected log. is found by reterence to one of the tables of proportional parts given in the margin of the tables, but all the published tables describe so fully how this is done that it is not necessary to repeat it here.

There are also several other practical operations required which are fully explained in the tables. amongst others. (1) finding the antilog. or the number corresponding to aus logarithm, and ($\boldsymbol{2}$) the method of dealing with logs. having negative characteristies, either by adition or subtraction, whirh follows the ordinary rule of algehat.

Speedal attention should, howerer, be given to the rules as to multiplying or diviling a log. with a negative chararteristic. The following method of dividing such a log. is used bey the anthor in order to find the ralue of the factor R , and differs from the method given in the tables, but is simpler. It is as follows:-

Having obtained the log. of $\mathrm{R}^{\mathrm{N}}(\mathrm{N}=20$ years $)$, viz, $\quad \overline{2} 9878003$ it is required to divide the log. by 20 , in order to obtain $\log R$,
proceed ley adding 20, 20 .
$=18.9858000 ;$
Divide this log. by $20=0.949: 3900$
and deduct 1 , to correct the addition of 20 , divided $\mathrm{l}_{\mathrm{y}} \mathfrak{2} 0,=1$.

$$
\text { Leaving the required log. } 1.9493900
$$

It is sometimes required to divide one log. by another, as in C'alculation XXXII, E., in orler to find the number of years, N, in an equated period at a given ratr per cent., knowing the value of the factors R^{N} and R . If both the logs. are positive or negative, they may be treated as ordinary numbers and the corresponding logs. found in the nsual way, but if their charac. teristies are, one phes and the other minus in sign, they must be reduced to the same sign.

CHAPTER III.

SIMPLE AND COMPOUND INTEREST.

Simple Interest. An arithmetical progression. Formule. Tables. Incidental use of the Tables.

Compound Interest. A geometrical progression. Derivation of the FormCla, $\Lambda=\mathrm{P}^{\mathrm{P}} \mathrm{R}^{\mathrm{N}}$, relativg to Compound Interest, from the algebraical formula, $l=a r^{(n-1)}$, relating to a geonetrical frogression. Enplanation of terms. Difference between the amounts of £1 and of £ pler añuli at the end of 1 year. "Present Vhlee" compared with "Practical Discount."

Simple Interest, An Aritinetical Progressiox. Simple interest is an arithmetical progression, and the amount of any sim of moner, at the end of any given term, may be ascertained by continucd addition of the interest upon the sum for one year, or other period, at the stated rate per cent. It is the method in gencral use in all commereial and financial transactions, although in rases where balances in an arcount current are struck at stated periods, it may partake of the nature of compomm interest. The main feature of this method is that the calculations may relate to varying sums, varying tines, and rarying rates per cent, and are expressed by the formula:-
Interest $=$ Principal \times rate per cent. per annum \times years
100
and the ascertained amount of interest is stated in the same terms as the principal, whether pounds sterling, shillings sterling, dollars or other rurrencr. All such calculations are extremely simple, and many tables are published giving the amomots of interest on varying amounts of prineipal for varying periods, whether days or years. The above formala is the me used to calculate the amount of interest for one or more years. If it he required to calculate the amount of interest for any number of days at a given rate per cent. per annmm, the formula becomes: -

The utility of any table of simple interest is limited only by its size, and it is very easy by means of the above formula to ascertain any required sum not given in the table. There are several modifications of this method to suit individual or special requirements which do not, however, require special mention.

Whilst on the question of simple interest, there is an interesting method of using such tables which may not be generally known. It is often required to ascertain the amount of rent, or other annual sum for a given number of days. If, for instance, it is required to ascertain the amount of 97 days' rent at $£ 865$ per annum, proceed as follows:-Multiply the annual rent $£ S 65$, by $\mathfrak{Z} 0=£ 1 \tau, 300$; refer to the tables and ascertain 97 days’ interest upon $£ 17,300$ at 5 per cent. 'This will be the amount of 97 days' rent.

Similarly, the annual rent may be multiplied by 25 and interest upon the product ascertained at 4 per cent., but the above method is the simplest as it involves multiplying by $\mathfrak{\sim}$ only. As a matter of fact any other equivalent multiplier and rate per cent., having 100 for their product, may be used. This method may be applied to ascertain the proportion of the annual sinking fund instalment to be set aside in respect of a loan borrowed at various dates in one year as afterwards pointed out in Chapter XXX.

Compound Intrerest, a Geometrical Progression. Compound interest differs from simple interest in that it is a geometrical progression in which the rate per cent. is always uniform during the whole period, and the periods are all equal, whether years, half years, months, or otherwise. There are several published tables of compound interest, and many tables have been calculated for special purposes. The one most generally used in England is by William Inwood (1Sth Edition published 1880), commonly referred to as "Inwood's Tables." A new and much improved edition was issued in 1899, revised and extended by Mr. William Schooling.

Tables of this character are extremely useful, and provide for the majority of calculations required to be made by Local Government and municipal authorities, actuaries, accountants, bankers and valuers, and the officials of commercial and financial undertakings.

Derivation of tife Formulaz. It is a very interesting study to analyse the tables mathematically and to derive each
table from the simple algebraical formula used to find the last of a series of numbers in a geometrical progression, viz.:-

$$
l=u r^{n-1}
$$

where $a=$ the first term,
$l=$ the last term,
$r=$ the constant factor or ratio,
$n=$ the number of terms in the progression.
A geometrical progression consists of a series of numbers which increase or decrease by a constant factor or common ratio, and many problems may be solved by means of the algebraical formine relating to such a progression, namely, the sum of a series, either finite or to infinity, the insertion of a number of geometric means between two numbers, and finding the last term of a series. Problems involving compound interest, however, include only the first term, the ratio, and the last term, all of which may be determined by means of the algebraical formula with only slight modification. The factors (which remain unchanged cxcept as regards the actual symbol) are an follows:-
$a=$ the first term of the progression, which corresponds to the principal sum (P) at the begiming of the number of years.
$l=$ the last term of the progression, which corresponds to the amount (A) of the principal sum (P) at the end of the number of years.
$r=$ the common ratio, or the number by which each term in the progression is multiplied in order to find the succeeding term. In the formule relating to compound interest this is expressed by the symbol (R) hecause when dealing with anmuities, a symbol is required to represent a new factor $(R-1)$ which is denoted by (r), and which will be explained later.
$n=$ the number of terms in the progeression, and is the only factor in the algebraical formula requiring any alteration in the sense in which it is used. In both formulae the ratio acts in exactly the same mamer, or once during cach interval in the progression, and it acts upon each term except the last. In any progression, the number of intervals between the terms is one less than the number of terms, or, as it may be expressed :

$$
\text { (il) intervals }=(11-1) \text { terms. }
$$

In the case of compound interest, the intervals are years, or other equal periods of time, consequently the algebraical formula is altered by substituting (N) years for ($n-1$) terms, using the capital (N) to denote the number of years in order to distinguish it from the small (11) which denotes the number of terms in the algebraical formula.

Substituting the amended symbols as above,

$$
\bar{l}=a r^{m-1} \quad \text { becomes, } \quad \mathrm{A}=\mathrm{P}^{\mathrm{P}} \mathrm{R}^{\mathrm{N}}
$$

and the above symbols have the following meaning throughout the book: -
$A=$ the amount, or the ultimate sum to which the present sum (P) will accumulate in (N) years at the ratio or constant factor (R). This symbel will be used to denote this factor whether it represents the ultimate sum required to be found at the end of the period; or the given sum due at the end of the period, of which it is required to find the present value (P).

The use of the word "amount" is different from the usual meaning attached to it in ordinary language, and it is rery necessary to distinguish it from a sum of money. A very much better word would be "accummlate."
$\mathrm{P}=$ the principal or present value, and denotes a sum of money in hand, or due, now. It also denotes:
(1) the present value of a definite sum of money (A) due at the cond of a stated period of years, and
(\mathcal{Z}) the present value of an annuity or other periodie sum (A,y) payable or receivable at the end of each of a stated number of years or periods.

These two factors (\mathbf{A}) and (\mathbf{P}) are intimately related. (P) is the first term, and (A) the last term, of a geometrical progression. (P) is the present value of (A) due at the end of a stated term, and (A) is the amount to which (P) will accumulate during that period.
$\mathrm{R}=$ the ratio or commom factor, and denotes the rate of increase (expressed in terms of unity) in each term of the progression. It does not denote the rate per cent. per annum, althongh it is derived directly from the rate per cent. It is, in all cases, $£ 1$ increased by interest upon
$£ 1$ for one year at the rate per cent. in question; in the case of 5 per cent. it is $1 \cdot 05$, as will be clearly shown in Calculation (IV) 1, and so on for every other rate per cent. The ratios corresponding to each rate per cent. from $\frac{1}{4}$ to \tilde{i} per cent. are given later in Table No. V. A, together with the corresponding logarithms. In calculations involving compound interest the actual rate per cent. is never used, but only in its relation to $£ 1$ by way either of a ratio (R) or of the interest upon $£ 1$ for one year (r).
$N=$ the number of years, or other equal periods, and, as already explained, must not be confounded with (n) in the algebraical formula for a geometrical progression which denotes the number of terms in the progression. This number of terms includes the first term, but in the case of compound interest the number of years is one less than the number of terms in the progression; therefore (N) years $=(n-1)$ terms. In the case of annuities, a modification of the above formula will be required, the derisation of which from the formula $\left(A=P R^{N}\right)$ will be fully explained. This modified formula will contain additional symbols, namely-
$\Lambda_{y}=$ the ammuity or other periodic sum, to be set aside, paid or received at the end of each year or period.
$M=$ the amount of the annuity or other periodic sum (Ay) accumulated for a given number of years or periods (N) at a given rate per cent. This symbol bears the same relation to a perionlic sum ($A y$) as (A) bears to a present sum ($\mathbf{P}^{\mathbf{P}}$).
$r=$ the interest upon $£ 1$ for one year or period at the stated rate per cent. It is found from the above ratio or common factor ber deducting unity therefrom. The values of this factor for the rarious rates prer cent, and the corresponding logs., are shown in Table Xo. V. A, which will be given later.

The above formula, $\Lambda=P R^{\mathrm{N}}$, with its rarious modifications, may be used to fiud factors which are sufficient to solve all questions of compound interest in relation to sinking funds and annuities. The artual values of earh factor are capable of being tabulated for varying terms at varying rates per cent.; and to make them generally useful the results are stated in the
published tables in terms of $£ 1$ so that any problem as to other amotuts may be solved by multiplying or dividing the actual figure in the problem by the amounts given in the published tables. In the old edition of Inwood these tables, I. to V., are given separately; but in the new edition, Tables I. to IV. are shown in four separate columns in one table. Throughout the book they will be referred to as Tables I. to V., and anyone using the new edition will refer to the corresponding column in the table on pages 50 to 85.

The Difference hetween the Amounts of £1 and of £1 per Annum at the End of One Year. It is important to remember that in all caleulations involving (\mathbf{P}) the sum of money whieh it represents is due or in hand at the begimning of the first year of the period. In the case of ammities, the annual sum is assumed to be set aside, paid, or received at the end of the first and every subsequent year of the period. This is very important, sufficiently so to justify the following extracts from the tables:-

Table $\quad 1$. The amount (A) of $(\mathrm{P}) £ 1$ at the end
of one year at 5 per cent. is

$£ 1 \cdot 05$

Table 11. The present value (P) of (A) $£ 1$ due at the end of one year at 5 per cent. is $£ 0.9524$

Table 1II. The amount (M) of (Ay) £1 per annum at the end of one year at 5 per cent. is $£ 1.00$

Table 11 . The present value (P) of $(\mathrm{A} y) \pm 1$ per annum for one year at 5 per cent. is $£ 0.9524$

From the above it will be seen that the amount of $£ 1$ at the end of one year $(£ 1.05)$ is greater than the amount of $£ 1$ per ammum at the end of one year $(\notin 1)$ because the $£ 1$ is in hand and bears interest during the first year, whereas the ammity of $£ 1$ per annum is not due until the end of the year. But on comparing the present value of $£ 1$ due at the end of one year, and the present value of $£ 1$ per ammm due at the end of one year, they are the same (viz., $£ 0.9524$) because they are both due at the same time.

Problems may arise involving a variation from this prineiple when dealing with purchases on the deferred payment system. In such cases, the ammal instament of principal and interest combined is generally payable at the end of the first and
subsequent years, in the above manner, but it sometimes happens that the agreement provides that the first payment shall be made at the beginning of the first year which makes an important alteration in the method. Such problems, however, rarely arise in connection with the sinking funds of local authorities or of commercial or financial undertakings, and will not be further considered.

Practical Discount as Compared with Present Talue, Discount of Bills, de. The above extracts show that $£ 100$ at 5 per cent. at the end of one year will amount to ± 105, and that ± 105 due at the end of one year at 5 per cent. is worth now $£ 100$. The difference between the two amounts viz.. $£ 5$, is the mathematical or true diseount, and is based uon the present value. In practical finance the method adopted in discounting bills is to deduct interest at the rate per cent. from the amount of the bill payable at the end of the period, and as this amount is always greater than the present value, practical diseount, as it is called, is always greater than the mathematical or trus diseount. For instance, a bill for $£ 105$ due at the end of one rear, and discounted by the bank at 5 per cent., is worth now $£ 99 \cdot 5$, ascertained as follows:-

Amount of the bill £10500
Less the practical discount at 5 per cent. for one year $£ 5 \cdot 25$

$$
\text { or a net value of } £ 99 \cdot 75
$$

If the customer leaves this sum on deposit with the bank, at 5 per cent. he will at the end of the year be credited with 5 per cent. upon $£ 99$ \% 5 or
$£ 498 \div 5$

$$
\text { and will then receive } . . . £ 10+7375
$$

as compared with the amount of the bill £105.

$$
\text { a difference of } \ldots \quad \ldots \quad \ldots \quad £ 0 \cdots 625
$$

In other words, he would lose and the hank would gain $£ 0 \cdot 26.5$ althengh the bank have had the nse of the money for the whole of the year.

And in addition, interest upon this amount for one
year at 5 per cent., or
$\ldots$$\ldots$
$£ 0 \approx 625$

This proves that the present values as given in the tables of compound interest are not available for discounts which are merely arithmetical calculations, and for which special tables are constructed.

CHAPTER IV.

COMPOUND INTERENT AS APPLIED TO A SUM OF MONEY.

TABLE I. The amount of $£ \mathrm{I}$ in any number of years.

The formila, $A=\mathrm{P}^{\mathrm{P}} \mathrm{R}^{\mathrm{N}}$, and rtles dedtced therefron. Cillctlation by the aritimetical method. ('ompllation of Tables. Thomin's metiod and formula.

Authors stantard Galctation Form, Mo. 1.

Formulæ.

A. To find the Amount of E 1 in any number of years, as given in the published tables:-

Formula, $\quad \mathrm{A}=\mathrm{R}^{\mathrm{N}}$
by logs.: Log. (Amount of $\left.£^{\prime} 1\right)=\log . \mathrm{R}^{\mathrm{N}}$
13. To find the Amount of anys sum of money in an!! number of years:-

Formula, $\quad \mathrm{A}=\mathrm{P}^{\mathrm{N}}$
by loys: Log. (Amount of principal sum $)=\log$. (principal sum) $\log . \mathrm{R}^{\mathrm{N}}$
The above formulte, and methods b! logs. aple! equally to Thoman's Formular and Tables, which are fully described in Chapter IX.

General Rules deduced from the above formulæ.

To find the amment of any sum of money in an!y mumber of years. Author's Standard C'altulation F'urn, I'o. 1.

Rule 1. If the rate per cent. be not gieen in Table I, or in Thoman's Tables:-

Preceed by the formula relating to Table I. C'alculation (IV).3.1.
Rule 2. If the rate per cent. be gien in Table 1:-
Maltiply the amount giren in the table, bey the gieces sum. The product is the amount required. (alculation (IV) 3 B.

Rule 3. If the rate per cent. be given in Thoman's Tables:To the log. of the given sum, add the log. of R^{N} as given by Thoman. The sum of the logs. is the loy. of the amonent required. Calculation $(I \mathrm{Y}) 3($.
To find the rate per cent., or number of years, proceed as shown in the standurd form for the murpose, given in Chapter X.

The formula, $A=P R^{N}$, will now be applied to the solution of problems involving compound interest in relation to a sum of money, whether now in hand or payable or receivable at any future date. The published tables are as follows:-

Table I. The amount of $£ 1$ in any number of years.
Table $I I$. The present value of $£ 1$ due at the end of any number of years.
Each table will be considered in detail to show the method of compilation by means of the above fomma, but in the present case the arithmetical method of calculation will first be given in full, in order to point out the relation between the two methods.

The Arithmetical Method. In the following calculation, IV (1), at the end of the first year, interest at 5 per cent. is added to the principal sum in hand at the begimning of the year. At the end of the following, and each subsequent year, interest is added to the amount of principal and interest combined, at the begiming of the year. The amount of added interest increases each year, but if each item of interest be compared with the sum upon which it is bascd, it will be seen that in all cases they bear the same ratio, namely, 0.05 to 1 . On comparing the amount of principal and interest at the end of auy year, with the similar amount at the end of the succeeding year, it will be observed that they are always in the ratio of 1 to 105 .

In other words, although an amount of interest has been added each year, the amount of prineipal and interest at the end of each year might have been obtained by multiplying the amount at the end of the previons year ly 1.05 , or the ratio R . This is therefore a geometrical progression increasing at a ratio of $1 \cdot 05$. This calculation will be referred to again in Chapter VI, when considering the derivation of the formula relating to an anmual or other periodic payment, and the discussion of the matter in that chapter may be referred to at this stage with advantage.

Calculation (IV) 1.

To find the Amount of a given Sum at the end of a given term. Table I.
Required the Amomit of $\ddagger 1$ at the end of 5 years at 5 per cent., compound interest.

By Arithmetical Calculation. Principal Sum at the beginning of the first year... ... $1 \cdot 0000$

1. First year’s Interest thereon \ldots... ... $=(r) \quad \cdot 0500$

$$
\left.\begin{array}{lllllll}
(1 \times 1 \cdot 05
\end{array}\right) \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad=(\mathrm{R}) \quad 1 \cdot 0500
$$

2. Second year's Interest thereon $. . . \quad . . . \quad$.
$(1.05 \times 1.05) \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad . . .1025$
3. Third year's Interest thereon0551
$(1 \cdot 1025 \times 1 \cdot 05) \quad$.. $. . . \quad . . \quad \ldots \quad . . .115 \tau 6$
4. Fourth year's Interest thercon $\quad \ldots \quad$...
$(1 \cdot 15 \cdot 6 \times 1 \cdot 05) \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad . . .1 \div 2155$
5. Fifth year's Interest thereon0608
$(1 \sim 255 \times 1 \cdot 05) \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad 1 \because i 63$
which is the required amount at the end of the 5th year; and agrees with the amount given in 'Table I. A further amplification of this calculation will be made in Chapter VI.

Tine Mathematical Method. It very rarely happens that calculations of compound interest are requited for so short a period as 5 years; generally they are for very much longer periods. Conseguently the arithmetical method as shown in the above C'alculation (IV) 1, becomes cumbrous and liable to error, and it is imperative to adopt a shorter method, namely, the algehraical on mathematical one, based upon the formula, $\Lambda=I^{\prime} R^{N}$. Here it is required to find the amount Λ, knowing that :-

$$
\mathrm{P}=1, \mathrm{R}=1 \cdot 0.5 \text { and } \mathrm{N}=5
$$

The equation therefore becomes:

$$
\Lambda=R^{N}, \text { or } \Lambda=(1 \cdot 05)^{5}
$$

but to raise R, or 105 to the 5 th power or perhaps to the $20 t h$, $30 t h$, or 60 th power is a much louger task than to make the
original calculation by the arithmetical method, as in the previous example, and recourse is had to lugarithms, which have been fully described in Chapter II. The calculation will be made upon standard caleulation form No. 1 by method (A) therein contained, and it will be found that the resulting amount agrees with the value given in Table I in the published tables. It will also be seen that the resulting log. of the required amount agrees with the \log. of R^{N} in 'Thoman's tables.

The above methods will now be applied to the following example in order to demonstrate that the calculation by means of logarithms and the above formula is quite as simple, not ouly for any longer period, but at any rate per cent., whereas the calculation by the arithmetical method will be longer in proportion to the number of years, and will consequently involve a greater possibility of error in the arithmetical computation.
"Required the amount of $£ 500$ at the end of 20 years at 5 per cent. per annum compound interest." Calculation (IV) 3.

As in the previous caleulation, relating to $£ 1$ only, the result will be ascertained by the same methods, viz:-
A. by the formula, $\mathrm{A}=\mathrm{P}_{\mathrm{R}^{\mathrm{N}}} \quad \ldots \quad \ldots \quad \ldots \quad$. Rute 1
B. by the published table No. I, giving the amount of $£ 1$ at the end of any number of years Rule $\mathfrak{\sim}$
(. by Thoman's tables Rule 3
in each case adopting the logarithmic method of calculation. The above rules and formule are fully set out in the heading to this chapter.
'Thoman's Method and Formula. Although 'Thoman's method applies more particularly to calculations involving annuities or other periodic payments, these tables may with advantage be utilised to solve problems relating to the amount and present value of $£ 1$, owing to the fact that the actual logs. of R^{N} are there given, instead of having to be taken from the log. tables. The full consideration of Thoman's tables is contained in Chapter IX.

Calculation (IV) 2.

Standard Calculation Form, No. 1.
To find the future amount of a present sum, and thereby prove the accuracy of the published table.

Table I.
Required the amount of $£ 1$ at the end of 5 years at 5 per cent., per annum, compound interest.

Required future amount, $£ 1 \cdot 262 S$, which agrees with the result obtained by the arithmetical mothod, Calculation (IV) I, and also with the amount given in 'rable I.

(13	By Table I.	$\Lambda=\mathrm{PR}^{\mathrm{N}}$	Rule
Table I. 5 years, 5 per cent. Amount of $£ 1$ aud Log. Present Sum		R^{N}	127628
		P'	
		A	1:27628

Required future amount, $\mathfrak{f l \cdot r} \underset{\sim}{r} 6 \mathcal{Q}$, as given in Table I.

Required future amount, $\mathfrak{f l}{ }^{2} \boldsymbol{\sim} 6 \mathfrak{S}$. This \log. is given in Thoman's 'Table.

Calculation (IV) 3.

Standard C'alculution Form, No. 1.
To find the future amount of a present sum.
Table I.
Required the amount of $£ 500$ at the end of 20 years at 5 per cent. per anuum, compound interest.

(A)	BH_{5}	Formula. $\quad \mathrm{A}=$	$A=P \mathrm{R}^{N}$	Rule 1, Chapter IV.	
$\begin{aligned} & \log . \\ & \mathrm{R}^{\mathrm{N}} \end{aligned}$		Log. Ratio multiply Log. R by	R	1.05	0.0211893
		N	20	20	
		R^{N}	$(1.05)^{20}$	0423\% 863	
		Log. Present Sum add Log. R^{N} above	P'	500	$\bigcirc \cdot 6989700$
		R^{N}		$0 \cdot 4235860$	
		1		$3 \cdot 1229560$	

Required future amount, $£[: 326 \cdot 65$.

(By Table I. $\quad \mathrm{A}=$	$\mathrm{A}=\mathrm{P}^{\text {R }}{ }^{\mathrm{N}}$	Rule 2 , Chapter IV.	
Table I. 20 years, 5 per cent. Amount of $£ 1$ add Log. Present Sum		R^{N}	2-65: 3	0.42:5960
		I'	500	$\because 6989700$
		A		31225560

Required future amount, $£ 192665$.
(C) By Thoman'sTable. $A=P R^{N} \quad$ Rule ?, Chapter IV. 5 per cent. 20 years.

Log. Present Simm add Log. R^{N}	$\begin{aligned} & \mathrm{P} \\ & \mathrm{R}^{\mathrm{N}} \end{aligned}$	500	$\begin{aligned} & 2 \cdot 6989700 \\ & 04237560 \end{aligned}$
	A		$3 \cdot 1295660$

Required future amount, $£ 1: 926 \cdot 65$.

CIAP'TER V.

(OMPOUND INTEREST AS APPLEED TO A SUM OF MONEY (Continued).

TABLE II. The present value of $£ \mathrm{I}$, due at the end of any number of years.
Derivation of the formula, $P=\frac{A}{R^{2}}$. and rulem dedtered therefrom. Complation of Thimes. Thble of Ritios. and logs. of R, and r. Caldulatioss for periods other thay tears. Thomin's method and formula.

Author’s S'tandari Cileculation Form. No. ${ }^{2}$.

Formulæ.

A. To find the present calue of $£ 1$, due at the end of an!! number of years, as given in the published tables:-

$$
\begin{array}{cc}
\text { Formula, } & \mathrm{P}=\frac{1}{\mathrm{R}^{\mathrm{N}}} \\
\text { by log.: } & \text { Log. (present ralue of } \mathfrak{\&} 1)= \\
& \text { Log. } 1(=0)-\text { Log. } \mathrm{R}^{\mathrm{N}}
\end{array}
$$

B. To find the present value of $\quad 1 \mathrm{n}!$ sum of moncy, due at the end of any number of years:-

$$
\begin{array}{cc}
\text { Formula, } & \mathrm{P}=\frac{\mathrm{K}}{\mathrm{~N}} \\
\text { by logs.: } & \text { Log. (present ralur })=\text { Logy. (amount due } \\
\text { at end of period })- \text { Log. } \mathrm{R}^{\mathrm{N}}
\end{array}
$$

The above formuln, and methois by logs... apply rquall!! to Thoman's formula and twbles, whirh are fully diseribed in ('hapter IX.

General Rules deduced from the above formulæ.

To find the present calue of any sum of money, due at the cond of any number of years.

Author's Standard C'alculation Form, No. 2.

Rule 1. If the rate per cent. be not given in Table I1, or in Thoman's Tables:-

Proceed by the formula relating to Table 11.
C'alculation (V) 2A.
Rule 2. If the rate per cent. be given in Tuble II:Multiply the amount given in the table, by the given sum. The product is the present value required. Calculation (V°) $\mathcal{B} B$.
Rule 3. If the rate per cent. be given in Thoman's Tables:From the log. of the given sum, deduct the loy. of R^{N} as given by Thoman. The remainder is the log. of the present calue required. Calculation (l) $\because($ C
To find the rate per cent. or number of years, proceed as shown in the standard form for the purpose, given in Chapter X.

Derivation of the Formula. Having ascertained the methods of finding the accumulated amount of any sum of money at the end of any number of years at any rate per cent., the converse will now he considered, namely, the present value of any sum due at the end of a giren number of years. These two factors are intimately related. In Calculation (IV) 3 it was found that a present sum of $£^{5} 500$ at $\overline{5}$ prer cent. compound interest will in 20 years amount to $£ 13 \geqslant 6.65$, but this denotes also that $£ 500$ at 5 per cent. is the present value of $£ 1326.65$ payable at the end of 20 years, consequently the formula $\mathrm{A}=\mathrm{P} \mathrm{R}^{\mathrm{N}}$ will give two results, or reciprocals, namely,

Table 1 . The amount of a given sum, P, in any

$$
\text { number of years, } \mathrm{N}, \ldots \ldots{ }^{\ldots} \ldots
$$

Table 11. The present value of a given sum, A, due

$$
\text { at the cnd of any number of years, } N,=P \text {. }
$$

The formula for finting the present value of a giren sum, instead of being,

$$
A=1^{\prime} R^{N} \text {, becomes } \mathrm{P}^{\mathrm{P}}=\frac{\mathrm{A}}{\mathrm{R}^{\mathrm{N}}}
$$

or, in other words, the present ralue of a sum due at a future date may be ascertained by dividing the amount due at the end of the number of years by the ratio, R , raised to the power equal to the number of years, N. In the case of $£ 1$ as in Table II, the formula becomes $\mathrm{P}=\frac{\mathrm{J}}{\mathrm{R}^{N}}$ since A , the future amount, is $£ 1$.

This formula, $P=\frac{1}{R^{\mathrm{N}}}$ may now be used to ascertain the amounts given in Table II, and, as in the previous example, the calculation will be made by three different methods, namely,

A, by formula Rule 1 .

in each case adopting the logarithmic method of ealeulation. The above rules and formulae are fully set out in the heading of this chapter.

Thonax's Method and Formela. In considering the methods of finding the amounts of $\mathfrak{t l}$ in any number of years as given in Table I, attention was drawn to the adrantage of using Thoman's tables. It was found that the calculation by this method is similar to the calculation by Table I, but in the case of Table Il, relating to the present value of a future sum, it is necessary to make use of the reciprocal of R^{N}, or $\frac{1}{R^{x}}$.
The only difference between the two tables is that in the case of Table I the \log. of R^{N} is addod to the log. of the present sum, whereas in the rase of Table II the same log. is deducted from the log. of the future given sum of which it is required to find the present value. Calculation (V) 1 .

The same formula will next be used in order to ascertain the present value of $£ 182665$ due at the end of $\mathfrak{2} 0$ years at 5 per rent. compound interest, and thereby prove the converse of Calculation (IV):, adopting the same methods, namely, by formuka: by the published 'Table 11: and by Thoman's method. ('alculation (V^{+}) $\mathfrak{2}$.

Cabchations ror Preriods other than Years. In cases where it is reguired to calculate eompound interest for periods other than years, and the rate per eent. is expressed as per ammom, it is necessary to take a rate per cent. proportionate to the period of a year. For instance, if it be required to caleulate the amome of a sum of money rolling up half yearly, double the mumber of years and talie one-half the rate per cent. per annum, as follows:-

```
\(£ 1\) at the end of 10 years at 10 per cent. per annum
    will amount to (yearly breaks) ...
    £゙こ.9938
\(£ 1\) at the end of 10 years at 10 per rent. per annum
    will amount to (half-yearly breaks)
    \(=20\) years at 5 per cent. ... ... ... ... ... \(£ 2 \cdot 6539\)
\(£ 1\) at the end of 10 rears at 10 per cent. per annum
    will amount to (quarterly breaks)
    \(=40\) years at \(2 \frac{1}{2}\) per cent. \(\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots\).... \(£ 2851\)
```

This is a very useful method to adopt when it is required to ascertain the effect of compounding the interest at various periods, and the rule applies equally to calculations involving anmuities. All that is necessary is to deal with the number of periods at the corresponding rate per cent. per period, based upon the rate per cent. per anmum.

The Factors R (Ratio) and r (The Interest of $£ 1$ for One Year) and the Correstonding Logarithas.

In order to simplify the method by formulae and logs. the following Table, No. I. A., has been prepared. It gives the ratio (\mathbf{R}) and the corresponding logs. for 49 rates from $\frac{1}{4}$ per cent. to a per cent. It also contains the values and corresponding logs. of the factor (r) which is the interest umom $£ 1$ for one year. There is not anything difficult in the compilation of the table, which is here given only for convenience of reference. The logarithms corresponding to ans rate per cent. may be ascertained from the log. tables at the time of making the calculation, but since many of the ratios contain six figures, it involves the use of the proportional parts of the logarithms, and a reference to this table will saw time. When dealing with anmuities, the logs. of $\left(\mathrm{R}^{\mathrm{N}}\right)$ and (r) are required in each calculation, and as they have alwars to be looked for in different parts of the \log. tables, it is a convenience to have them in one place. If it is necessary to make a calculation at any intermediate rate per cent. not included in this table all that is recfuired is to find the ratio, which is one pound. increased b!y interest upon one pound, for one yedr, at the giren rate per cent., and then the corresponding \log. The factor (r), as will be seen from the table, is ascertained by deducting 1 from the ratio so found. The logs, of both are found from the tables of logs. in the usual war, paring due attention to the sign of the " characteristic" of the log. of (r). The logs. of $\left(R^{N}\right)$ are given in Thoman's tables for many rates per cent. for a large number of years.

Calculation (V) 1.

Standard C'alculution Form, Vo. 2.
To find the present value of a sum due at the end of any number of years, and thereby prove the accuracy of the published table.

Table II.
Required the present ralue of $£ 1$, due at the end of $\mathfrak{2} 0$ years, at 5 per cent. per annum compound interest.

By Formula. P	$\mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{\mathrm{N}}}$	Rule 1, Chapter V.	
(Log. Ratio	$1!$	$1 \cdot 05$	0.021189:3
Log. multiply Log. R by	N	20	20
1	$\mathrm{R}^{\text {N }}$	$(1.05)^{20}$	04237560
Log. Future Sum	A	1.	0.
deduct Log. R^{N} above	R^{N}		04235860
	P		$1 \cdot 5762140$

Required present value, $£ 0 \cdot 3 i 689$, which agrees with the amount given in Table II.

Required present value, $£ 03 \pi 689$, as given in Table II.
(C) By Thoman's Table. $\quad \mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{\mathrm{s}}} \quad$ Rule 3, Chapter C.

5 per cent. 20 years.

| Log. Future Sum
 deduct Log. | I 1 0
 R^{N} 0.4237860
 P $\overline{\mathrm{I}} \cdot 5762140$ | |
| :---: | :--- | :--- | :--- |

Required present value, $£ 0: \% \% 689$. This \log. is given in Thoman's Table.

Calculation (V) 2.

Standard C'alculation Form, . Yo. \because.
To find the present value of a sum due at the end of any number of years.

Table II.
Required the present value of $£ 1: 9265$, due at the end of 20 years, at 5 per cent. per annum compound interest.

(A) By Formula. $\quad \mathrm{P}=\frac{\mathrm{L}}{} \mathrm{R}^{\text {a }}$			Rule 1, Chapter V.	
 Log. Future Sum deduct Log. R^{N} above		$1:$	$1 \cdot 05$	0.0ミ1189:
		N	$\because 0$	20
		$\mathrm{R}^{\text {N }}$	$(1.05)^{20}$	04233860
		A	132665	31225560
		R^{N}		$0 \cdot 4237860$
		P		$2 \cdot 6989700$

Required present value, $£ 500 \cdot 00$.

Required present value, $£ 500 \cdot 00$.

Required present value, $£ 500 \cdot 00$.

TABLE V，A．
Giving the ralues of（R）and（ r ）for the following rates per cent．（from $\frac{1}{4}$ to \mathfrak{T} per cent．）and the corresponding \log of each value．
$(R)=$ the amount of $£ 1$ plus one year＇s interest at any rate per cent．

$$
=(1+r)
$$

$(r)=$ the interest upon $£ 1$ for one year at any rate per cent．

$$
=(\mathrm{R}-1) .
$$

The Logarithms of $\left(\mathrm{R}^{\mathrm{N}}\right)$ are given in Thoman＇s Tables under each rate per cent．

Rate	Ratio $=\mathrm{R}$		Rate Interest on $£ 1$ for 1 year $=r$ ．		
\％	12	Lug．R	\％	r	L．og．r
$\frac{1}{4}$	1.0025	$0 \cdot 00108438$	$\frac{1}{4}$	0.0025	3－3979400
$\frac{1}{2}$	1.005	$0 \cdot 00216606$	$\frac{1}{2}$	0.005	$\bar{\square} 6989700$
$\frac{3}{4}$	1.0075	0.00924505	$\frac{3}{4}$	$0 \cdot 0055$	385061：
1	1.01	0.00432137	1	0.01	20000000
$\frac{1}{2}$	1.015	$0 \cdot 00646604$	$\frac{1}{2}$	0.015	玉176091：
$\frac{5}{8}$	1.01625	$0 \cdot 00700056$	$\frac{5}{8}$	0.01625	「こ1085：4
$\frac{3}{4}$	1.0155	0．0075：342	$\frac{3}{4}$	0.0155	T－24：30：80
$\frac{7}{8}$	1.01855	$0 \cdot 0080676 \%$	$\frac{7}{8}$	0.01855	9．2：30013
2	$1 \cdot 0^{2}$	$0 \cdot 00860015$	\because	$0 \cdot 0$ 2	פ－3010：300
$\frac{1}{8}$	1.02125	0．0091：20\％	$\frac{1}{8}$	$0 \cdot 0 \geq 125$	
$\frac{1}{4}$	1.0295	0．00966：3：	$\frac{1}{4}$	$0 \cdot 0295$	2？521825
$\frac{3}{8}$	1．02：35	0．01019：391	$\frac{3}{8}$	$0 \cdot 02: 355$	玉．3\％566：36
$\frac{1}{2}$	1.025	$0.01022: 385$	$\frac{1}{2}$	0.025	5：3979400
$\frac{5}{8}$	1.02605	$0.01125: 317$	$\frac{5}{5}$	$0 \cdot 0.025$	$\overline{\mathrm{w}}+19129: ;$
$\frac{3}{4}$	1－02\％ 5	00117818：\％	3	$0 \cdot 0: 55$	9－4：93925
$\frac{7}{8}$	1.02855	$0 \cdot 01230985$	$\frac{7}{4}$	0．02855	24586：38
：	1．0：3	$0.0198: 3029$	\because	0．0：3	9．4ヶ1213
$\frac{1}{8}$	1．03105	0．01：36：96	$\frac{1}{8}$	0．0：3125	2．4948500
$\frac{1}{4}$	109：95	0．01：389006	$\frac{1}{4}$	$0 \cdot 0: 295$	251188：34
3	1－10：3：35	0.014155	3	0．01：3：375	2595\％2：
$\frac{1}{2}$	10：95	0．014940：35	$\frac{1}{2}$	0．00：5	2.540680
$\stackrel{5}{6}$	$1 \cdot 0: 3625$	0.01546454	5	0．00：695	－559：3080

Rate	Ratio $=\mathrm{R}$		Rate \%	Interest on $\mathfrak{f l}$ for 1 year $=r$	
\%	R	Log. R		r	Log. ${ }^{\text {r }}$
$\frac{3}{4}$	1.0375	$0 \cdot 01598811$	$\frac{3}{4}$	0.0375	2.5740313
$\frac{7}{8}$	1.03875	$0 \cdot 01651104$	$\frac{7}{8}$	$0 \cdot 03875$	2.5882717
4	$1 \cdot 04$	$0 \cdot 01703334$	4	$0 \cdot 04$	2. 6020600
$\frac{1}{8}$	$1 \cdot 0 \pm 195$	$0 \cdot 01755501$	$\frac{1}{8}$	$0 \cdot 04125$	$\overline{2} .6154240$
$\frac{1}{4}$	1.0425	$0 \cdot 01807606$	$\frac{1}{4}$	0.0425	$\mathfrak{\sim} 6283889$
$\frac{3}{8}$	1.04375	$0 \cdot 01859649$	3	0.04355	2.6409781
$\frac{1}{2}$	$1 \cdot 045$	$0 \cdot 01911629$	$\frac{1}{2}$	$0 \cdot 045$	¢. 6592125
$\frac{5}{8}$	$1 \cdot 04625$	$0 \cdot 01963547$	$\frac{5}{8}$	$0 \cdot 046.5$	2.665111
$\frac{3}{4}$	$1 \cdot 0455$	$0 \cdot 02015403$	$\frac{3}{4}$	0.0455	2. 6766936
$\frac{7}{8}$	$1 \cdot 04875$	$0 \cdot 0206719 \sim$	$\frac{7}{8}$	$0 \cdot 04875$	2.6879746
5	$1 \cdot 05$	$0 \cdot 02118930$	5	0.05	2.6989700
$\frac{1}{8}$	$1 \cdot 05125$	$0 \cdot 02170601$	$\frac{1}{8}$	$0 \cdot 05125$	\% 7096939
$\frac{1}{4}$	1.0525	$0 \cdot 02929210$	$\frac{1}{4}$	$0 \cdot 0525$	2.7201593
$\frac{3}{8}$	$1 \cdot 05: 375$	$0 \cdot 09273759$	$\frac{3}{8}$	$0 \cdot 05355$	হ.730:3785
$\frac{1}{2}$	$1 \cdot 055$	$0 \cdot 02325246$	$\frac{1}{2}$	$0 \cdot 0.55$	2. 7403627
$\frac{5}{8}$	1.0 .5625	$0 \cdot 02976672$	$\frac{5}{8}$	0.05625	2.7501225
$\frac{3}{4}$	$1 \cdot 0575$	$0 \cdot 0: 428038$	$\frac{3}{4}$	0.0 .575	2.5596678
$\frac{7}{8}$	$1 \cdot 05855$	$0 \cdot 02479342$	$\frac{7}{8}$	0.0585	2.7690079
6	$1 \cdot 06$	$0 \cdot 0253058 \sim$	6	$0 \cdot 06$	2.7781513
$\frac{1}{8}$	$1 \cdot 06125$	$0 \cdot 02581750$	$\frac{1}{8}$	$0 \cdot 06125$	হ. 78.1061
$\frac{1}{4}$	$1 \cdot 0695$	$0 \cdot 02632894$	$\frac{1}{4}$	0.0625	$\overline{2} .7958800$
$\frac{3}{8}$	$1 \cdot 06375$	$0 \cdot 0268: 3957$	$\frac{3}{8}$	$0 \cdot 06355$	2. 8044802
$\frac{1}{2}$	$1 \cdot 065$	$0 \cdot 02734961$	$\frac{1}{2}$	$0 \cdot 06.5$	2.8129134
$\frac{5}{8}$	$1 \cdot 06695$	$0 \cdot 02785904$	$\frac{5}{8}$	$0 \cdot 06625$	2.8211859
$\frac{3}{4}$	$1 \cdot 06750$	$0 \cdot 02836788$	3	$0 \cdot 06750$	2.8293038
$\frac{7}{8}$	$1 \cdot 06875$	$0 \cdot 02887613$	$\frac{7}{8}$	$0 \cdot 06855$	2.8:372727
i	1.07	0.029383\%8	T	$0 \cdot 07$	こ.8450980

CILAPTER VI.

COMPOUND INTEREST AS APPLIED TU AN ANNUAL

 OR U'TIIER PERIODIC: PAYMEN'T.
TABLE III. The amount of $£ \mathrm{I}$ per annum in any number of years.

General memarks as to annuities. The relation between the amounts of $£ 1$, and of $£ 1$ per annum. The arithametichl method ferther coxsidered. Derivation of the formula, $M=\Lambda_{y}\left(\frac{R^{2}-1}{r}\right)$ and rutes deduced therefrom. Compllation of Tables. 'Tifoman's method ANi) Formela.

Author's Standard Cilcthtion Form, No. 3.

Formulæ.

 years, as given in the published tables:-
(1) Formula, $\quad \mathrm{M}=\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)$
by logs.: Log. (amount of $\mathfrak{f l}$ per annum) $=$
Log. $\left(\mathbf{I}^{\mathrm{N}}-\mathrm{I}\right)-$ Log. r
(D) By Thoman's method:-

Formula, $\quad \mathrm{I}=\frac{\mathrm{R}^{\mathrm{N}}}{\iota^{n}}$
by loys.: Log. (amount of $\mathfrak{f l} 1$ per annum $)=$ Log. $\mathrm{R}^{\mathrm{N}}+10-$ Log. a^{n}
B. To find the amomet of any anmuity in any number of years:-

$$
\begin{array}{cc}
\text { (1) Formuln, } & \mathrm{M}=\Lambda_{y}\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right) \\
\text { bylug..: Log. (amount of amnuity) }=\text { Log. annuity }+ \\
\text { Log. }\left(R^{\mathrm{N}}-1\right)-\text { Log.r }
\end{array}
$$

(:) By Thoman's method:-

$$
\begin{array}{cc}
\text { Formula, } & \mathrm{I}=\Lambda y \mathrm{R}^{\mathrm{N}} \\
\text { by logs. : } & \text { Log. (amount of annuity })=\text { Log.anmuity }+ \\
\text { Log. } \mathrm{R}^{\mathrm{N}}+10-\text { Log. } a^{n}
\end{array}
$$

The present ehapter deals only with the formula $\mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)$. Thoman's method and formule, are fully deseribed in Chapter IX.

General Rules deduced from the above formulæ.

To find the amount of any amnuity in any number of years. Author's Stundard Calculation Form, No. 3.
Rule 1. If the rate per cent. be not given in Table III, or in Thoman's Tables:-

Proced by the formula relating to Table $1 I I$. Calculation (I'I) 2 A.
Rule 2. If the rate per cent. be given in Table I7I:-
Multiply the amount given in the table, b!y the given anmuity. The produet is the amount required. Calculation (V1) $\because B$.
Rule 3. If the rate per cent. be given in Thoman's Tables:To the log. of the given anmuity, add the log. of R^{N} as given by Thoman. Add 10 to the sum of the tro loys., and deduet therefrom the log. of a^{n} as gieon by Thoman. The remainder is the log. of the required amount. Calculation (VI) $2 C$.
To find the rate per cent., or mumber of years, proceed as shoun in the standard form for the purpose, given in Chapter I.

Annuities or other Periodic Payments. All problems relating to anmual sums involve calculations of a more complex character than the steady accumulation of a given sum of money. Matters are complicated by the intrusion of a factor representing an equal annual or other periodic sum, to be set aside, received or paid, at the end of each year, and accumulated at a given rate per cent., for a given number of periods. Such an equal amual or other periodic sum is callect an annuity, but in this connection it should be borne in mind that actuarially the term annuity includes any definite sum of money to be paid or received at the end of any given number of regular intervals. There is room for a better word, but it does not matter so long as it is known what the term includes. In the following pages the word annuity will be used to denote any equal sum payable at the end of regular periods, except that in the case of sinking funds, the word "instalment "or " amual increment" will be substituted.

As in the case of a principal sum, an annuity or other periodic payment may be expressed in terms of its "amount" or "present value" which are given in Tables III and IV respectively.

The Factors R (Ratio) And r (the Interest of $£ 1$ for One Year).
In all calculations involving a geometrical progression the predominant factor is the ratio which, in the algebraical formula, is expressed by the symbol, r. A pure geometrical progression relates only to a series of numbers, increasing in a definite ratio, similar to the annual accumulation, by way of compound interest, of a given sum of money as described in Chapter IV', dealing with Table I. The algebraical formula for a pure geometrical progression does not provide for any further addition to each term of the progression. In the case of compound interest, however, the problem may be complicated by the annual or other periodic addition of a definite sum, namely, the annuity, and it is necessary therefore to amend the formula, $A=P R^{N}$, by dividing the factor, R, or ratio, into two parts, namely, the actual algebraical ratio and the equal annual addition to each term of the progression, representing the constant sum or annuity to be added to each term. In the algehraical formula the ratio is expressed by the symbol, r : In the formula relating to compound interest two symbols are used, namely:-
$R=$ the common ratio existing between the successive terms of the progression irrespective of any periodic equal additions to the progression. This factor, R, in the formulee relating to compound interest is the equivalent of the algebraical factor (r).
$r=$ the ammal or other periodic sum added to each term of the progression, and which, as regards the formulae relating to unity, represents the anmal interest of $£ 1$ for one year.

In this manner the arcumulation of an annal sum by way compormd interest, cannot properly be considered a pure geometrical progression. It is rather the sum of several arithmetioal progressions in echelon, which accounts for the difficulty in determining the rate per cent. by means of the formula, as will be seen on reference to the standard form for the purpose eriven in Chapter X .

The Relation between the Amount of £l avi of £1 per Annum. It is necessary to derive a formula relating to the amounts and the present ralues of $£ 1$ per ammum as given in the published tables, which formula, although based thereon, is of a somewhat more complicated character than the simple formula relating to Tables I and II. The additional symbols which will be reguired have already, in anticipation, been explained in Chapter III.

Before proceeding to find such a formula the subject will be considered from the point of view of the accumulation of a single sum now in hand, as illustrated by Calculation (IV) 1 in Chapter TV. It is possible to aseertain the sum to which an annuity will amount at the end of a stated period, by treating each of the annual payments separately, and finding the sums to which they will respectively amount at the end of the period, by the method already considered in relation to Table I. The total of these separate results will represent the sum to which the whole annuity will amount at the end of the period (see columns 1 to 4 in the following table).

The method is a cumbrous one, and therefore not practical, but the working of such a caleulation is given in order to demonstrate the relation between Table I, giving the amounts of $£ 1$, and Table III, giving the amounts of $£ 1$ per annum. It will also emphasise what has been already pointed out in Chapter III, namely, the difference between the amounts of $£ 1$ and of $£ 1$ per anmum at the end of any equal number of years, as also shown in columns 5 and 6 in the following table. This difference is due to the fact that in all caleulations of this nature the sum of money of which it is required to find the amount at the end of a term of years, as in Table I, is assumed to be in hand and to commence to accumulate at once, whereas, in the case of an annuity, the annual or other periodic payments are assumed to be made at the end of each year or period, at which date they begin to accumulate. An ammuity of $\mathfrak{£ l}$ for a given number of years may, therefore, be considered as a series of sums of money, each of which is deferred, both as to the date of payment and of aceumulation, for $1,2,3$, 4 , cte., years. Taking as an example an annuity of $£ 1$ for 10 years to aecumulate at 5 per cent. per annum, the sum to which each separate payment will amount at the end of the 10 years will be ascertained by the method adopted in Calculation (IV) 1, and after deriving the formula relating to the amounts of an amuity, as given in Table III, the same example will be worked out, ly means of the formula, in Caleulation (VI) 1.

TABLE VI, A. Showing the method of finding the amount of an annity from the figures given in Table I, relating to a principal sum and illustrating the relation between the amounts of $£ 1$ and of $£ 1 \mathrm{per}$ annum at the end of one year.

Rate of accumulation, 5 per cent.

$\begin{aligned} & \text { Amount } \\ & \text { set winl } \\ & \text { aside aceu- } \\ & \text { at mulate } \\ & \text { end of for } \\ & \text { year. years. } \end{aligned}$	table i.		table ifi.		table I .		
	Amount of each annual sum at end of loth year.	$\begin{gathered} \text { Total at } \\ \text { enld of } \\ \text { each otear } \\ \text { of the } \\ \text { antounts } \\ \text { in col. } 3 . \end{gathered}$		nount of er annum end of from 10 years			Total at ent of of the amounts in Col. 6.
(1) (2)	(3)	(4)		(5)		(6)	(1)
100	$1 \cdot 0000$	$1 \cdot 0000$	1	$1 \cdot 0000$		-	
$9 \quad 1$	1.0500	$2 \cdot 0500$	2	$2 \cdot 0500$	1	$1 \cdot 0500$	$1 \cdot 0500$
8 2	$1 \cdot 1025$	$3 \cdot 1525$	3	$3 \cdot 1525$	$\mathfrak{\sim}$	$1 \cdot 1025$	$2 \cdot 1525$
7 3	$1 \cdot 1576$	$4 \% 101$	4	$4 \% 101$	3	$1 \cdot 1576$:3:101
64	$1 \sim 155$	5.5256	5	55256	4	$1 \cdots 155$	45256
$5 \quad 5$	$1 \cdot 2763$	6-8019	6	6.8019	5	12963	$5 \cdot 8019$
± 6	13401	S.1420	\%	8.1420	6	13401	T•1420
3	1-407.	$9 \cdot 5491$	8	95491	\%	$1 \cdot 4071$	8.5491
~ 8	14575	$11 \cdot 0266$	9	11.0266	8	1475	10.0266
19	1551%	12.5759	10	12.5759	9	1.551:	115579
	125「59					115799	

In the above table:-
Column 1, contains the year at the end of which each annual sum is set aside, and Column \because the number of years for which it afterwards accumulates.

Column 3, is taken item by item from Table I (with the exception of the first item of $£ 1$) and shows the amount of each separate annual sum (beginning with the 10 th) at the end of the 10 th year as if it were aremulated separately. The total of Cohum : 3 is the accumulated amount of the whole of the ammal sums obtamed in this mamer, and agrees with the amount given in Table $11 I$ and found by Calculation (VI) 1.

Columnt, gives, at the ent of each sumessive year, the total of the previons items in Columa: $:$, which is the amomet of all the ammal sums set aside up to the end of that
year. The items in this column eorrespond, year by year, with the amounts of an anmuity of $£ 1$ given in Column δ, which is copied item for item, from Table III, which gives the amounts of an annuity of $£ 1$ for any number of years.
Column 6, contains the amounts of $£ 1$ at the end of each year from 1 to 10 years, copied, item by item, from Table I. These figures correspond with each item, except the first, in Column 3 .
Column 7, contains the total at the end of each successive fear of the previous items in Column 6, and might have been obtained by adding together the figures given in Table I. On eomparing the totals of Columns B and 6 , it will be seen that the tutal of Cohmm 6 , at the end of the 10 th year, is less by $\mathfrak{£} 1$ than the total of Column :’. Similarly, if at the end of any year the totals in Column 5 are compared with the totals in Column i, the same difference will be found.
Consequently, if it be required to ascertain the accumulated amount of an amuity of $£ 1$ for 10 , or any other number of years, at 5 per cent. per annum from Table I, which gives the amounts of $£ 1$, it may be foumd by adding together the successive amounts given in Table I for 9, or one less than the specified number of pears, and increasing the sum so ohtained by $£ 1$. The sum of the 9 amounts is the amount of nine years accumulation of $£ 1$ per annum, and the $£ 1$ so added is the last annual sum, which does not accumulate at all owing to its being set aside on the last day of the last year of the term.

Derifation of the Formila. The above-described arithmetical methorl of finding the amount of an annuity for any number of years depends upon treating each annual sum as a separate entity, but does not treat the annuity quâ annuity, and, further, it does not give any elue to a rule or formula by which the result may be obtained by direct mathematical calculation. Many problems contain factors involving the aceumulation of $£ 1$, and also of $£ 1$ per anmum, and it is advisable therefore that all formule should be expressed in the same or similar terms. The formula relating to the amount of $£ 1$ in any number of rears, namely, $A=P R^{N}$, has already been asrertained, and it will now be used in order to deduce therefrom a formula relating to the aecumulation of periodic sums. The practical application of that formula will be first
considered, and will be based upon the arithmetical Calculation (IV) 1 , as afterwards proved by means of the formula, in Calculation (I^{+}) 2. As explained in Chapter $I V$, at the end of the first year, interest at 5 per cent. per annum was added to the original principal sum of ± 1, and at the end of each subsequent rear interest at 5 per cent. per annum was added to the amount of principal and interest at the begimning of such rear. In Calculation ($[\backslash$) 1, the interest added each year was treated as one sum, and was not divided in order to differentiate between the interest added yearly in respect of the original prineipal sum as distinguished from the interest added yearly upon the interest added in previous years. In the following table (No. VI, B) such a distinction has been made, and the results obtained in Calculation (IV) 1 are repeated in Column 2. The interest added each year has been divided as between the principal and the interest previously added, and Column :3 contains the constant annual amount of interest upon the original principal of $£ 1$, which is (r) in the list of symbols given in Chapter III. Columns $4,5,6$, and I contain each rear's accumulated interest upon each annual amount of interest (r) upon the original principal of $£ 1$. The table is as follows:-

TABLE VI, B.
Showing the amount of $£ 1$, for 5 years at 5 per rent. per ammum. Calculation (IV) 1. Showing also the annuity of $(r)=0.05$, and its accumulations.

$\begin{gathered} \text { I } \\ \text { At } \\ \text { end } \\ \text { of } \\ \text { year. } \end{gathered}$	2 Amonnt of むし. 5 year5%. $1 \cdot 0000$	3 Anmual Interest on $£ 1$ l'rincipal.	4	5	6	l	s Total Acemme lation
			Acemmulation of (r) Anmal Interest on til at end of				
			2nd	ard	4 th	jth	
1	-0.500	- 0500	$\cdot 0025$	$\cdot 00 \% 6$	$\cdot 00: 3$	$\cdot 0029$	$\cdot 0108$
	$1 \cdot 0500$						
~	-0505	$\cdot 0.500$	-	- 00.25	$\cdot(00 \div 6$	$\cdot 0028$	$\cdot 0079$
	$1 \cdot 1025$						
;	-0.5.51	-0.500	-	-	-0025	$\cdot 00 \geq 6$	0051
	$1.15 \% 6$						
4	-(0)59	- 0.500	-	-	-	$\cdot 00: 5$	$\cdot 0025$
	$1 \because 159$						
5	-10308	- 0.500	--		--	-	-
	$1 \cdot 9760$	W500	-0025	-00.) 1	$\cdot 0079$	- 0108	$\cdot 020 \cdot 3$

$1 \cdot 00000$ (higinal sum
"500 Anmual Luterest

- OP0: Anermmatations of Ammal Interest

12763

The original principal sum of $£ 1$ may now be left out of the calculation, and be considered ouly as the origin of an ammal sum or annuity, of $£ 0.05$ to be accumulated for 5 years at 5 per cent. per annum compound interest. It is in fact, at 5 per cent, the present value of a perpetual amuity of $£ 0 \% 5$. The results obtained in the above table will now be translated into terms of the formula $\lambda=\mathrm{P} \mathrm{R}^{\mathrm{N}}$, writing against each factor in the arithmetical result the corresponding symbol in the formula, but as the formula is being considered in its relation to ± 1 only, there will be substituted for P its equivalent 1 , with the following result, viz., $A=R^{N}$.

The above Table VI, B, expressing the results of Calculation IV (1) may be analysed as follows:-

Actual
results. Formula.
Amoment of $£ 1$ in 5 years at 5 per cent. ... $1 \because 2 \pi 63 \quad R^{N}$
Seduct, the principal sum of which
this is the amount at the end of

5 years (Table 1)	\ldots	\ldots	\ldots	1	1
	leaving	\ldots	$0.2 \% 63$	$R^{N}-1$	

which is the acemmulated amount of the annual interest upon £l at 5 per cent., or $1 \cdot 05-1=0.05 \quad \ldots \quad \ldots . \quad . . \quad . .0005 \quad R-1$
which is the annuity which will in 5 years at 5 per cent., amount to $\mathfrak{£} 0 \underset{\sim}{2} 63$, as shown in the above table, No. VI, B.

The formula relating to the accumulation of an annual sum is derived from the foregoing results as follows:-

It has been ascertained by means of the formula
$\mathrm{A}=\mathrm{P}^{\prime} \mathrm{R}^{\mathrm{N}}$ relating to the accumulation of $£ 1$ as given in Table I, that the amount (A), of $£ 1(\mathbf{P})$ at the end of any number of years is R^{N} and by deducting therefrom the original sum, P , or its equivalent, which in this case is .
a constant is obtained which will apply to any rate per cent., namely \ldots... $\quad . . \quad \ldots \quad \ldots \quad R^{N}-1$

This constant represents the aceumulated amount of the annual interest upon $£ 1$, resulting from the aceumulation of the original principal sum P, at the ratio R, for N years.

In the above example, the ratio, which is P , plus one year's interest, is R or 1.05
and by deducting therefrom the original principal sum P , or 1 , the remainder is $\mathrm{l}-1$ or 0.05
which represents the interest upon $£ 1$ for one year and is constant for any rate per cent.

Fxpressing the above in terms of the calculation in Table VI, B, it is found that:-
($R^{N}-1$) or $0 \cdot 2 \pi 6 ; \%$ is the areumulated amount of an anmal sum of $(\mathbf{R}-1)$ or 0.05 for (N) or 5 years, at a ratio (R) $\mathbf{1} \cdot 05$, which is the equivalent of 5 per cent. per annum.

Stated in the form of a proportion the problem becomes:If 0.05 per annum or $(\mathrm{R}-1)$ amounts to $0 \cdot 2763$ or $\left(\mathrm{R}^{\mathrm{N}}-1\right)$, what sum will $£ 1$ per annum amount to under the same conditions, as follows:-

$$
\frac{0 \cdot 2763}{0.05}=\frac{1^{\mathrm{N}}-1}{\mathrm{R}-1}=5 \cdot 5: 6
$$

which agrees with the amount given in Table III, and provides a formula which may be used to calculate the amount of $£ 1$ per annum for any number of years at any rate per cent. To find the amount of any other annual sum all that is required is to multiply the result obtained in the above manner by the annual sum in question.

It is not possible to simplify the above factor ($\mathrm{R}^{\mathrm{N}}-1$) because R^{N} varies with each number of yoars, but $(R-1)$ may be expressed by a simple symbol berause it is always constant for each rate por cent. It may be found by deducting unity from R or by dividing the rate per cent. by 100 . The factor $(R-1)$ is denoted by the symbol (r) do show at one e its relation to, and variation from, the factor (R) from which it is derived.

The amount of $£ 1$ per annum is denoted by the symbol (X) to distinguish it from (Λ) the amount of $£ 1$.

The formula therefore becomes:-
(1) as to $£ 1$ per annum:

$$
\mathrm{M}=\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)
$$

and
(?) as to any anmual sum (Ay):

$$
\mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)
$$

aud the symbols have the meanings described in Chapter III.
The annuity or other periodic sum in all cases, as already pointed out, is presumed to be paid or reccived, set aside or invested, at the end of the first and each succeeding year, which is the usual method in all amuity calculations. If it be set aside at the begriming of the year the calculation is somewhat different.

Calcelations. Having found the above formula relating to the amount of ± 1 per annum in any number of years, two calculations will now be made by its aid, upon the author's standard form No. 3 . Both will include the three methods of which the general rules are stated at the head of this chapter, namely, by formula, by the published tables, and by Thoman's method and tables. The first calculation will deal only with an annuity of $£ 1$, and will show the method of computing the amounts giren in Table III, Calculation (VI) 1 . The second calculation will deal with an annuity of stated amount, and will illustrate the method to be adopted in actual practice. Calculation (VI) 2 .

Calculation (VI) 1.

Standard ('alculation Form, No. 3.
To find the amount of an annuity in any number of years, and thereby prove the accuracy of the published table.

Table III.
Required the amount of $£ 1$ per annum for 10 years at 5 per cent. per anmum compound interest.

(A) B	By Formula. $\quad \mathrm{M}=\mathrm{A}_{y}$	$y\left(\mathrm{R}^{\text {N }}\right.$) Rule	hapter VI.
$\begin{aligned} & \text { Log. } \\ & \mathrm{R}^{\times} \end{aligned}$	$\int_{\text {Log. Ratio }}^{\text {multiply Log. R by }}$	R	$1 \cdot 05$	0.0211893
		N	10	10
	$\left\{\begin{array}{l} \text { Convert Log. to } \\ \text { ordinary number } \\ \text { deduct unity } \\ \text { Log. of this is } \end{array}\right.$	R^{N}	$(1 \cdot 05)^{10}$	02118930
		$\mathrm{R}^{\text {N }}$	$1 \cdot 6289$	
		-1		
		R^{N} - 1	$0 \cdot 6289$	1.7985「79
Log. Annuity $a d d \log \cdot \mathrm{R}^{\mathrm{N}}-1$ above		Ay	1.	$0 \cdot 0000000$
		$\mathrm{R}^{\mathrm{N}}-1$		1.7985:79
deduct Log. r		Ay ($\mathbf{R}^{\text {N }}$		1.7985759
		r	$\cdot 05$	2.6989700
		II		1-09960ヶ9

Required future amount, $£ 125579$.
(B) By Table III. $\quad \mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{x}-\mathrm{l}}{r}\right)$ Rule \mathcal{Z}, Chapter VI.

Table III. 10 years, 5 per cent. $\mathrm{R}^{\mathrm{N}}-1$
Amount of $£ 1$ per annum Add Log. Anuuity 12:57\%9
r
$\mathrm{~A} y$
$\frac{\mathrm{A} y}{\mathrm{II}}$

Required future amount, $£ 255 \sim 9$. This amount is given in Table III.
(C) By Thoman's Table. $\mathrm{M}=\mathrm{A}_{\mathrm{y}}\left(\frac{\mathrm{R}^{\mathrm{N}}}{a^{u}}\right)$ Rule 3 , Chapter TI.

5 per cent. 10 years.

Log Annuity$\text { Add Log. } \mathrm{K}^{\mathrm{N}} \text { in }$	Ay	1.	$0 \cdot 0000000$
	R^{N}		10'2118930
deduct Log. a^{n}	Ay R^{N}		10:1189:30
	a^{n}		9•1122851
	M		1.0996079

Required future amount, $£ 125579$.

Calculation (VI) 2.

Standard Calculation Form, No. 3.
To find the amount of an annuity in any number of years.
Table III.
Required the amount of $£ 500$ per annum for 10 years at 5 per cent. per annum compound interest.

(A) 1	By Formula. $\quad \mathrm{M}=\mathrm{A} y$	$\left(\frac{\mathrm{R}^{\mathrm{N}}-\mathrm{l}}{r}\right)$ Rule 1, Chapter VI.	
$\stackrel{\text { Log. }}{\mathrm{R}^{\mathrm{N}}-\mathrm{I}}$	$\left(\begin{array}{l} \text { Log. Ratio } \\ \text { multiply Log. R by } \end{array}\right.$	$\mathrm{R} \quad 1.05$	0.0211893
		$\mathrm{N} \quad 10$	10
	Convert Log. to ordinary number deduct unity	$\mathrm{R}^{\mathrm{N}} \quad(1.05)^{10}$	02118930
		$\mathrm{R}^{\mathrm{N}} \quad 1.6289$	
		- 1	
	Log. of this is	$\mathrm{R}^{\mathrm{N}}-1 \quad 0 \cdot 6289$	1.7985759
Log Annuity add Log. R $\mathrm{R}^{\mathrm{N}}-1$ above		A $y=500$	$2 \cdot 6989700$
		$\mathrm{R}^{\mathrm{N}}-\mathrm{I}$	1.7985759
deduct Log.r		$\mathrm{A}_{y}\left(\mathrm{R}^{\mathrm{N}}-1\right)$	$2 \cdot 4975479$
		r	$2 \cdot 6989700$
		M	3.7985759
Required future amount, $£ 6288.94$			
By Table III. $\quad \mathrm{H}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-\mathrm{l}}{r}\right)$ Rule 2, Chapter VI.			
Table III. 10 years, 5 per cent. Amount of $£ 1$ per annum add Log. Annuity		$\begin{array}{ll}\mathrm{R}^{\mathrm{N}}-1 & 12.5779\end{array}$	$1 \cdot 0996079$
		$\begin{array}{ll} \bar{r} \\ A! & 500 \end{array}$	$2 \cdot 6989700$
		M	3.7985759

Required future amount, £6288.94
$\overline{(C)}$ By Thoman's Table. $\quad \mathrm{M}=\mathrm{A}_{y}\left(\frac{\mathrm{R}^{N}}{\varepsilon^{n}}\right)$ Rule 3, Chapter VI. 5 per cent. 10 years.

Log Annuity Add Log. R^{N} in $\text { Table }+10$	A y	500	$2 \cdot 6989700$
	R^{N}		10\%118930
deduct Log. a^{n}	$\mathrm{A} y \mathrm{R}^{\mathrm{N}}$		129108630
	a^{n}		9•1122851
	M		3.7985759

CHAPTER YII.

COMPOUND IN'TEREST AS APPLIED TO AN ANNUAL OR OTHER PERIODIC PAYMENT (Continued).

TABLE IV. The present value of $£ \mathrm{I}$ per annum for any number of years.

$$
\mathrm{P}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{x}}-1}{\mathrm{R}^{\mathrm{N}} r}\right)
$$

Formelee used in calculations and rules deduced therefrom. Derinition of formula and application to compleation of tables and to caleulations. Calculations to demonstrate the theorettcal concleshoxs both as regards the published tables and practical examples. Thomax's method and formela.

Author's Standarid Caleclation Form, No. 4.

Formulæ.

A. To find the present calue of $\mathfrak{E l} 1$ per anmum for any mamber of years, as given in the published tables:-
(1) Formula,

$$
\mathrm{P}=\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{N}} \cdot}\right)
$$

by logs.: Log. (Present calue of $£ 1$ per annum) $=$ $\log .\left(\mathbf{R}^{\mathrm{N}}-1\right)-\log . \mathrm{R}^{\mathrm{N}}-\log . r$.
(2) By Thoman's method: -

$$
\text { Formula, } \quad \mathrm{P}=\begin{gathered}
1 \\
a^{n}
\end{gathered}
$$

by logs.: Log. (Present calne of $£ 1$ per annum $)=$ $10-L o g . u^{n}$
73. To find the present ralue of any ammity for any mumber of yents:-
(1) Formula,

$$
P=\Lambda_{y}\binom{R^{N}-1}{R^{N},}
$$

by log.s.: Log. (Present ralue of anmuity) $=$ Log. Ammity + Log. $\left(\mathrm{R}^{\mathrm{N}}-1\right)-\log . \mathrm{R}^{\mathrm{N}}-\log \cdot r$
(:) By Thoman's method:-

$$
\begin{array}{cc}
\text { Formula, } & \mathrm{P}=\frac{\mathrm{A} y}{a^{n}} \\
\text { bylogs.: } & \text { Log, }\left(\begin{array}{c}
\text { Present icalue of anmuity })=\text { Log } . \\
\text { annuity }+10-\text { Lag. } a^{n}
\end{array}\right.
\end{array}
$$

The present chapter deals only with the formula $\mathrm{P}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{N}} \cdot}\right)$. Thoman's method and formule are fully described in Chapter 1.N.

General Rules deduced from the above formulæ.

To find the present ralue of any ammity for any mumber of years. Author's Standurd Calculation Form, No.t.

Rule 1. If the rate per cent. be not given in Table 11 or in Thoman's Tables:-

Proced by the formula relating to Table IV.
C'alculation (「II) こA.
Rule 2. If the rate per cent. be given in Table 15 :-
Multiply the amount given in the table, by the given amnuity. The product is the prescut calue required. C'alculation (ГII) 2 B.

Rule .3. If the rate per cent. be given in Thoman's Table:-
To the loy. of the given annuity add 10, and deduct therefrom the log. of an as given b! Thoman. The remainder is the loy. of the present calue required.

Calculution ($1 / 71$) : C.
To find the rate per cent., or number of years, procecd as shown in the standard form forr the purpose, given in Chapter X.

Derivatiox of the Formula. In order to find the formula relating to the present value of an annuity due at the end of each year of a given term, the most direct method is to consider an annuity of $£ 1$ in order to demonstrate the principle involved and to arrive at the necessary modification in the previous formula relating to the amount of an annuity. It will be readily seen that the present value of an annuity for any number of years is the same as the present value of the sum to which that annuity will amount in the same period at the same rate per cent. It has been shown in Chapter VI that the amount of an annuity of $£ 1$ may be found by the formula :-

$$
\mathrm{M}=\frac{\mathrm{R}^{\mathrm{N}}-1}{r}
$$

and that the present value of $£ 1$ due at the end of any number
of years is found by the formula, relating to Table II and described in Chapter V, namely:-

$$
\mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{\mathrm{N}}}
$$

but $A=1$, therefore $\mathrm{P}=\frac{1}{\mathrm{R}^{\mathrm{N}}}$.
Consequently by multiplying these two formule together the required formula for the present purpose is obtained as finllows:-

$$
\mathrm{P}=(\text { present value of } £ 1 \text { per annum })=\frac{\mathrm{R}^{\mathrm{N}}-1}{r} \times \frac{1}{\mathrm{R}^{\mathrm{N}}}=\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{N}} r}
$$

and the formula to find the present value of any annuity, $A y$, for any number of years becomes:-

$$
\mathrm{P}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{N}} r}\right)
$$

There is a similarity between the formule relating to Tables III and IV, namely, that they are both based upon the factor $\frac{\mathrm{R}^{\mathrm{N}}-1}{r}$. In both cases, as will be seen by an inspection of the standard calculation forms, Rule 1 , the method consists in adding to the \log. of the ammity the \log. of $\mathrm{R}^{\mathrm{N}}-1$, and deducting from the sum of the logs. the log. of r. This gives the desired result in the case of Table III relating to the amount of an annuity, but in Table IV relating to the present value of an ammity, the log. of R^{N} is previously deducted from the log. of the amuity, which is equivalent to saying that the present values in Table IV may be found by dividing the amounts in Table III by R^{N}; but the values of $\frac{1}{R^{N}}$ are given in Table II, therefore the amounts in Table IV are equal to the amounts in Table III, multiplied by the amounts in Table II, or divided by the amounts in Table I.

Calctlations. Having found the above formula relating to the present value of an annuity of $£ 1$ for any number of years, two calculations will now he made ly its aid upon the anthor's standard calculation form, No. 4. Both cases will inchude the three methods of which the general rules are stated at the head of this chapter, namely, by formula, by the published tables, and by Thoman's method and tables. The first calculation will deal only with an ammity of $£ 1$, and will show the method of computing the amounts given in Table IV. Calculation (VII) 1.

The sceond calculation will deal with an ammuity of stated amount, and will illustrate the method to be adopted in actual practice. Calculation (VII) 2.

Calculation（VII） 1.

Standard Calculation Form，No． 4.
To find the present value of an amuity for any number of years， and thereby prove the accuracy of the published table．

Table IV．
Required the present value of $£ 1$ per annum for 10 years at 5 per cent．per annum，compound interest．

（A） J	By Formula．$\quad \mathrm{P}=\mathrm{A} y$	$\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{s}} r}\right.$	Rule 1	apter VII．
$\stackrel{\log }{\mathrm{R}^{\mathrm{N}}-1}$	Log．Ratio multiply Log． \mathbf{R} by	R	$1 \cdot 05$	$0 \cdot 0211893$
		N	10	0021838
		R^{N}	$(1.05)^{10}$	02118930
	Convert Log． to ordinary number deduct unity	$\begin{aligned} & \mathrm{R}^{\mathrm{N}} \\ & -1 \end{aligned}$	$\begin{aligned} & 1 \cdot 6289 \\ & 1 . \end{aligned}$	
	Log．of this is	$\mathrm{R}^{\mathrm{N}}-1$	$0 \cdot 6289$	1． 7985759
	Log．Annuity add．Log．$\left(\mathrm{R}^{\mathrm{N}}-1\right)$ above	A！／	1.	$0 \cdot 0000000$
		$\mathrm{R}^{\mathrm{N}}-1$		1．7985759
deduct Log． R^{N} a bove		R^{N}		$\begin{aligned} & 1.7985 \pi 59 \\ & 0.2118930 \end{aligned}$
				1.5866849
deduct Log．r		r		$\overline{2} \cdot 6989$ r00
		P		$0 \cdot 88 \div 149$

Required present ralue，$£ \div \cdot T 21 i 4$.

（B）By Table IV． $\mathrm{P}=\mathrm{A}_{\mathrm{y}}$	$\left(\frac{\mathrm{R}^{\times}-1}{\mathrm{R}^{\times} \mathrm{r}}\right)$ Rule 2 ，Chapter VII．
Table IV． 10 years， 5 per cent． Present Talue £1 per annum add Log．Annuity	$\begin{array}{ll} \mathrm{R}^{\mathrm{N}}-1 & 2 \cdot 2174 \\ \mathrm{R}^{\mathrm{N}} r & \\ \mathrm{~A} y & \end{array}$
	${ }^{1}$

Required present value，£っ「こ1T4．This amount is given in Table IV．

Calculation (VII) 2.

Standard Calculation Form, No. 4.

To find the present value of an annuity for any number of years. Table IV.
Required the present value of $£ 500$ per annum for 10 years at 5 per cent. per annum, compound interest.

(A) Bry Formula. $\quad \mathrm{P}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{x}}-1}{\mathrm{R}^{\mathrm{x}} \cdot}\right)$ Rule 1, Chapter \}				
$\mathrm{R}^{\mathrm{Log}}-1$	$\int_{\text {Logltiply Log. R by }}^{\text {Log. Ratio }}$	1 R	$1 \cdot 05$	0.0211893
		N	10	10
		R^{N}	$(1.05)^{10}$	$0 \div 118930$
	to ordinary number deduct unity	$\begin{aligned} & \mathrm{R}^{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 1 \cdot 6289 \\ & 1 \cdot \end{aligned}$	
	L Log. of this is	$\mathrm{R}^{\mathrm{x}}-1$	$0 \cdot 6289$	1.7985779
	Log. Aumuity add Log. $\left(\mathbf{R}^{\mathrm{N}}-1\right)$ above	Ay	500	$2 \cdot 6989700$
		$\mathrm{R}^{\mathrm{N}}-1$		1.7985759
	deduct Log. R^{N} above	R^{N}		$\begin{aligned} & 2 \cdot 4955+59 \\ & 0 \cdots 1189: 30 \end{aligned}$
	deduct Log.r			2×856549
		r		26989700
		P		35866849
	Required present ralue, $\pm: 3660 \cdot 867$.			

By Table IV. $\quad \mathrm{P}=\mathrm{A}_{\mathrm{y}} \mathrm{y}\left(\frac{\mathrm{R}^{\times}-1}{\mathrm{R}^{\times} \cdot}\right)$				
Table IV. 10 years, 5 per cent. Present Vahue £1 per annum fdd Log. Ammity		$\mathrm{R}^{\mathrm{N}}-1$	-1it	0.8851
		R^{N},		
		Ay	500	$\cdots 698970$
		P		-5866848

((1) By Thoman's Table. $\mathrm{P}=\frac{\mathrm{A}_{3}!}{a^{n}} \quad$ Rule: B , Chapter VII. 5 per rent. 10 years.

Log. Amuity	$1 y$	500	$2 \cdot 6989 \% 00$
add 10			$12 \cdot 6989700$
deduct Log.	a^{n}		$9 \cdot 1120851$
	P		$\because 58666849$

CHAPTER TIII.

COMPOUND INTEREST AS APPLIED TO AN ANNTAL OR OTHER PERIODIC PAYMENT (Comtimued).

TABLE V. The annuity which $£ \mathrm{I}$ will purchase for any number of years, or of which $£ \mathrm{I}$ is the present value.

$$
\mathrm{A} y=\mathrm{P}\left(\frac{\mathrm{R}^{\mathrm{N}} ;}{\mathrm{R}^{\mathrm{N}}-1}\right)
$$

Formelez ind reles deduced therefrom. General REMARKS AS TO 'TMBLE V' ANJ ITS REL.ITION TO AN EQUAJ, ANNUAL IN゙STALMENT, OF PRINCTPAL, IN゙D INTEREST COMBINED. 'THAS TABLE: GIVES THE dCTEN. VALEES OF THONAN'S LOG. FACCOR, a^{n}. DERIVATION OF FORMLLA IND APPLICATION TO COMPILATION OF TABLES AND TO CALCLLITIOAS. (ALCULATLONS TO DEMONSTRATE THE THEORETTCAL COXCLCSIONS BOTH AS REGARDS THE PCBLISHEI TABIAES IND IRAC'TICAL EAMMPLES. 'THOMAN'S METHOD INB FORACLA.

Author's Standafid C'meteation Form, No. 5.

Formulæ.

A. To find the anmuity which El will purchase for any number of years, or of which fit is the present ralue, as given in the mublisthed tables:-

$$
\begin{array}{cc}
\text { (1) Formula, } & \mathrm{A} y=\binom{\mathrm{R}^{\mathrm{N}} \cdot}{\mathrm{R}^{\mathrm{N}}-1} \\
\text { by logs.: } & \text { Log. (Ammity tl uill purchase })=\log \cdot \mathrm{R}^{\mathrm{N}} \\
+ \text { Log.r-Log. }\left(\mathrm{R}^{\mathrm{N}}-\mathrm{I}\right)
\end{array}
$$

(2) By Thomen's method:-

$$
\begin{array}{cc}
\text { Formula, } \\
\text { by logs.: } & \text { Log. } \begin{array}{c}
(1 \mathrm{mmuity} \\
a^{n}-10
\end{array}
\end{array}
$$

B. To find the annuity which may be purchased with any given sum for any number of years:-
(1) Formula,

$$
\mathrm{A} y=\mathrm{P}\left(\frac{\mathrm{R}^{\mathrm{x}} r}{\mathrm{R}^{\mathrm{N}}-1}\right)
$$

by loys.: Log. (required annuity) $=$ Log. (principal sum $)+\log . \mathrm{R}^{\mathrm{N}}+\log . r-\log .\left(\mathrm{R}^{\mathrm{N}}-1\right)$
(2) By Thoman's method:-

Formula, $\quad \lambda y=\mathrm{P} a^{n}$
by logs.: Log. (required annuity) $=\log$. (principal sum. $)+$ Log. $a^{n}-10$
The present "hapter deals only with the formula

$$
\mathrm{A} y=\mathrm{P}\left(\frac{\mathrm{R}^{x}}{\mathrm{R}^{2}-1}\right)
$$

Thoman's method and formule are fully described in Chapter $I X$.

General Rules deduced from the above formulæ.

To find the annuity which may be purchased with any given sum for any number of years.

Author's Standard Calculation Form, Mo. 5.
Rule 1. If the rate per cont. be not giren in Table T or in Thoman's Tables:-

Proced by the formula relating to Table T .
Calculation (T'IIT) 2 A.
Rule 2. If the rate per cent. be given in Table T : -
Multiply the annuity given in the table, by the given sum. The product is the required ammuty uhhich ma! be purchased. ('alculation (l'III) 2B.
Rule B. If the rate per cent. be given in Thoman's Tables:To the log. of the given sum, add the log. of a^{n} as gieen by Thoman. Deduct 10 from the sum of the two logs. The remainder is the log. of the required annuity which may be purchased.

Calculation (ГIII) 2 C.
To find the rate per cent., or number of years, proceed as shown in the standard form for the purpose, given in (hapter X.

Tables III and IV, containing the amounts and present values of $£ 1$ per ammom, correspond to Tables I and II relating to the amounts and present values of $£ 1$. There is a further

Table, No. V, given in Inwood and other published tables, which is useful in order to ascertain the annuity which may be purchased with a given sum of money, because anyone contemplating the purchase of an annuity generally has a definite sum to invest in this manner. Consequently it is required to know the annuity which $£ 1$ will purchase for any number of years, and from this can be ascertained by simple multiplication the annuity which any given sum will purchase.

But the principal value of this table lies in the fact that the amounts there given represent the respective annuities of which $£ 1$ is the present value. The importance of this will be recognised when it is remembered that this is the principle underlying the repayment of debt by an equal annual instalment of principal and interest combined, as laid down in Section $234(4)$ of the Public Health Act. 1855. Table V represents Thoman's factor $\left(a^{n}\right)$, and is a connecting link between $£ 1$ and $£ 1$ per annum considered both in regard to future amount and present value. B_{y} its aid the cumbersome factor $\mathrm{R}^{\mathrm{N}}-1$, previously referred to, may be avoided in cases where the rate per cent. is included in Thoman's tables.

Derifation of the Formila. The formula relating to this table may be found by simple proportion without resorting to any algebraical calculation. It has been ascertained by Calculation (TII) 1, that £r•T215 is the present value of an annuity of $£ 1$, and such values are given in Table IV. It is required to find the annuity of which $£ 1$ is the present ralue.

$$
\text { It is obrious that it will be } \frac{1}{7 \cdot \tau \mathfrak{2} 1 \tau} \text { of } £ 1 \text {. }
$$

Consequently, by dividing unity by the present value of an annuity of $£ 1$, as given in Table $I V^{\prime}$, the result is the anmuity which may be purchased by $£ 1$, and may be expressed by the following rule:-

To fund the annuity which $\in 1$ will purchase for any number of years, first ascertain by Table 11° the present value of an annuity of $\mathfrak{\in 1}$ for the same period at the same rate per cent.; and divide 1 by the present value so found. The quotient will be the annuity which may be purchased by $£ 1$.

This rule simply means that to ascertain the anuuity which $£ 1$ will purchase, unity is divided by the values given in

Table IV, but if it be reduced to terms of the annuity formula it becomes:-

Table V. Calcumposs. Having found the above formula relating to the amuity which $£ 1$ will purchase for any number of rears or the amnity of which $£ 1$ is the present ralue, two calculations will now be made by its aid upon the author's standarl form, No. 5. Both cases will include the three methods of which the general rules are stated at the head of this chapter, namely, by formula, by the published tables, and by Thoman's methorl and tables. The first calculation will deal only with the annuity which $£ 1$ will purchase, or of which $£ 1$ is the present ralue, and will show the method of computing the amounts given in Table T . Calculation (VIII) 1.

The second calculation will deal with a stated amount to be invested in an annuity, or of which it is reguired to ascertain the future equivalent expressed in an annal payment, and will illustrate the method to be adopted in actual practice. Calculation (VIII) \sim.

Calculation (VIII) 1.

Stamdard C'alrulation Form, No. j.
To find the annuity which a present sum will purchase for any number of years, and also the equal annual instalment of principal and interest combined, and thereby to prove the aceuracy of the published table.

Table T.
Required the annuity whirh $£ 1$ will purchase for 10 years at 5 per cent. per annum, compound interest.
(A) By Formula. $\quad A y=\mathrm{P}\binom{\mathrm{R}^{\mathrm{N}}}{\mathrm{R}^{\mathrm{S}}-1}$ Rule 1, Chapter VIII.

$\underset{\mathrm{R}^{\mathrm{N}} \stackrel{\log }{-1}}{ }$	Log. Ratio multiply Log. R by	16 N	$\begin{array}{r} 1.05 \\ 10 \end{array}$	0.0211893 10
		R^{N}	$(1.05)^{10}$	$0 \cdot 2118930$
	to ordinary number deduct unity	$\begin{aligned} & \mathrm{R}^{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 1 \cdot 6289 \\ & 1 . \end{aligned}$	
		$\mathrm{R}^{\mathrm{N}}-1$	$0 \cdot 6 \div 89$	1.7985759
	Log. Present Sum	P	1.	0 .
	arde Log. R $\mathrm{R}^{\text {N above }}$	R^{N}	$1 \cdot 6: 89$	$0 \stackrel{2118930}{ }$
	Log. r	$\stackrel{ }{ } \stackrel{ }{ }$	$0 \cdot 05$	$\bar{\sim} \cdot 6989700$
deduct $\log \cdot\left(\mathrm{R}^{N}-1\right)$ above				2.91086:30
		$R^{N}-1$		1.7985779
		A!		$\overline{1} \cdot 1122851$

Required annuity, $\pm^{(0 \cdot 1295}+6$.

Required anmuity, $\Psi^{\circ}() \cdot 1295 . \quad T h i s$ amount is civen in Table T. (C) 3^{\prime} Thoman's Table. $\quad \lambda y=\mathbb{P}^{\prime} a^{n}$ Rule ${ }^{\prime}$, Chapter VIII. 5 per cent. 10 years.

$\begin{aligned} & \text { Log. Present Simm } \\ & \text { add Log. } a^{n} \end{aligned}$	l^{1}	1.	$\begin{aligned} & 0 \\ & 9 \cdot 1122851 \end{aligned}$
			$9 \cdot 1122851$
deduct 10	A.y		$1 \cdot 1122851$

Required annuity, $\pm 0 \cdot 1: 95+6$.

Calculation (VIII) 2.

Standard Calculation Form, No. 5.
To find the annuity which a present sum will purchase for any number of years.

Table V .
To find the annuity which may be purchased with $£ 6288.94$ for 10 years at 5 cent. per annum, compound interest.
(A) By Formula $\quad \mathrm{A} y=\mathrm{P}\left(\frac{\mathrm{R}^{\mathrm{X}} r}{\mathrm{R}^{\mathrm{x}}-1}\right)$ Rule 1, Chapter VIII.

$\mathrm{R}^{\mathrm{Log}}-1$	Log. Ratio multiply Log. R by	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{r} 1 \cdot 05 \\ 10 \end{array}$	0.0211893 10
		$\mathrm{R}^{\text {N }}$	$(1.05)^{10}$	$0 \because 2118930$
	Convert Log. to ordinary number deduct unity	$\begin{aligned} & \mathrm{R}^{\mathrm{N}} \\ & -1 \end{aligned}$	$\begin{aligned} & 1 \cdot 6289 \\ & 1 \cdot \end{aligned}$	
		$\mathrm{R}^{\mathrm{N}}-1$	$0 \cdot 6289$	1.7985579
	Log. Present Sum add Log. R^{N} above Log. r	P	6288.94	3.7985ヶヶ9
		R^{N}	$1 \cdot 6259$	02118930
		r	0.05	$\mathfrak{\sim}$-6989700
deduct $\log .\left(\mathrm{R}^{\mathrm{N}}-1\right)$ above				2.7094409
		$\mathrm{R}^{\mathrm{N}}-1$	$0 \cdot 6289$	1.7985579
		A y		$2 \cdot 9108630$

Required annuity, £S14*447.

Required annuity, $£ 514447$.
(C) By Thoman's Table. $\quad A y=\mathrm{P} a^{n} \quad$ Rule 3, Chapter TIII. 5 per cent. 10 rears.

Log. Present Sum add Log. a^{n}	P	6288594	$\begin{aligned} & 37985759 \\ & 91122851 \end{aligned}$
			$1 \because 91086: 30$
deduct 10	Ay		29108630

CHAPTER IX.

THOMANS LOGARITHACIC TABLES OF COMEOUND INTEREST AND ANNUITIES.

Explanation of Thomax's symbols, R^{N}, and, a^{n}, and their RELATION, SEPARATELY OR IN COMBINATION, TO THE FORMULE already ascertained. Thomix's method of stating log. of a^{n} by adding 10 to the log.

Author’s Standard Calculation Forms, 1 to 5.

Symbols used by Thoman:-

$\mathrm{R}^{\mathrm{N}}=$ the amount of $£ 1$ in any number of years.
$a^{n}=$ the annuity which $£ 1$ will purchase for any number. of years.

$$
\left.a^{n}=\frac{\mathrm{R}^{\mathrm{N}} r}{\mathrm{R}^{\mathrm{N}}-1} \quad \text { (Table } V .\right)
$$

Comparison with previous formulæ:-

Table

Chapter. No. Giving Values of \quad| General Logarithmic |
| :---: |
| Formulat. Formule. |

IV. I. Amount of $£ 1 \quad \ldots \quad \cdots \quad \cdots \quad \cdots \quad \mathrm{R}^{\mathrm{N}} \quad \mathrm{R}^{\mathrm{N}}$
V. II. Present value of $£ 1 . \ldots$

V1. III. Amount of $£ 1$ per ammum $\ldots \ldots \begin{array}{llll}\mathrm{R}^{\mathrm{N}}-1 & \frac{\mathrm{R}^{\mathrm{N}}}{\mathrm{c}^{n}}\end{array}$
VII. IV. Present value of $£ 1$ per annum $\ldots \frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{N}} r} \frac{1}{c^{n}}$
VIII. T. Annuity which $£ 1$ will purchase $\frac{\mathrm{R}^{\mathrm{N}} \text { か }}{\mathrm{R}^{\mathrm{N}}-1}$ un n

The logarithmic equivalents of the above formuler and the rules based thereon are given at the head of the chapter dealing with each table.

Included in Inwood, and in other published tables of compound interest, are a series of valuable tables by M. Fédor Thoman, of the Soc. Credit Mobilier, of Paris, the author of " Logarithmic Tables of Interest, etc." These tables are of great assistance in the solution of many problems; and the whole of the formula already obtained by derivation from the algebraical formula for a geometrical progression will now be compared with the simplified formule given by Thoman. A glance at the above comparative table will show that the whole of the formule already obtained by derivation from the formula $A=P R^{N}$. may be expressed by some modification of the factors R^{r}. and r, which have already been fully explained in previous chapters. The table at the end of Chapter V contains the ralues of h, and r, for many rates per cent. likely to be required in practice, and also gives the corresponding logs. of these ralues: and it has heen explained how to find by means of the formulie the ralues and logs. of R, and r, for any intermediate rates per cent. not included in the above table. The ralues of R^{N} may be obtained by multiplying the log . of R by the number of rears, as shown in Calculation (IV)? and others.

Problems involving an ammal or other periodic payment, as in Table III, IV, and V, cause the introduction of a variation of R^{5}, namely $R^{N}-1$), which imports a new calculation which, although not of itself difficult, is inconvenient because it is necessary to convert the \log. of R^{x}, to an ordinary number before deducting unity, and afterwards to find the log. of the remainder. This might be avoided bey preparing tables of ($\mathrm{R}^{\mathrm{N}}-1$) and the corresponding logs., for each rate per cent. for any number of years.

In the aloove formule relating to an ammal sum in Tables III, IT, and V, the factor ($\mathrm{R}^{2}-1$) is always aswociated with r. or ($R^{-} r$. and R^{-}is the factor relating to the amount and present value of $£ 1$ as shown br Tables I and II. By combining the factors ($R^{N}-1$), and R^{N}, a commerting link is obtained between Tables I and II relating to $£ 1$, and Tables III, $I V$, and V. relating to the amount and present value of $£ 1$ per annum: and this is the principle underlying Thoman's methorl.

They are merely tables, and do mot emmoriate athy new principle, but hy giving under cach rate per cent. for rarious numbers of years the logs. of two factors only, they emalde any calculation to be made, at the rates inchuded in the tables, without any further reference to the ordinary published tables

I to V. Thoman's tables hare two alvantages ower the ordinary tables of componnd interest in that (1) they are worked out for tractional eighths per cent. up to 6 per cent., and (2) they give the logs. direct and thereby aroid any refernace to the log. tables; hat since they are worked out for a limited number only of rates per cent. they do not dispense entirely with the methot of calculation by means of the formule previonsly stated, and these methorls will therefore be iucluded in subsequent chapters as well as Thoman's methot.

The factors included in Thoman's tables are R^{N} and a^{n}. R^{N} is the factor governing Tables I and II, without any alteration, and Thoman's tahles may be referred to instead of finding the logs. of these values by the methods shown in the rarions ealeulations, using the ordinary tables and loges.
$a^{\prime \prime}$ is used by Thoman to denote the anmuity which $£ 1$ will purchase or of which $£ 1$ is the present ralue.

The logs. of 1^{n} in Thomanis tahles are, purely for convenience of calculation and perhaps for facilitating printing, given in a different form to the logs. of R^{N} in the same tables. In Tahle $\mathrm{I}\left(\mathrm{R}^{\mathrm{N}}\right)$ the ralues are all greater than mity, hence the chararteristies of the logs. of these valnes are always positive. In Table Y the ralues are all derimals of mity, and the logs. of these ralues have negative characteristies. Thoman adds 10 to the charateristics of the logs. of the values of $\prime^{\prime \prime}$ in Table T, and thus, bearing in mind that any calculation can be made by means of l^{N} and l^{n}, it is possible to climinate the troublesome negative charaderistic altogether. All that is required is to correct the characteristic of the final log. by adding 10 in the case of Tables III and IV, and deducting 10 in the case of Table V, to or from the resulting \log. before ascertaining the antilog., or numerical equivalent. Thoman's logs. of an may be treated in the ordinary way, by using the mantissagiven in the table and converting the characteristic there given to the proper minus fuantity, i.e., 10 minus the given characteristie. For the sake of clearness the method of deducting or adding 10 from or to the log. has been adopted in the whole of the standard calculation forms prepared by the author.

There are two methods of comnerting the ordinary tables and formule relating to $£ 1$, and $£ 1$ per anmum, namelr, either by means of Table I and III, dealing with the respective amoments (as atopted by Thoman to derive the factor 1^{n} as shown by Table T) or by means of Tables II and III, leading to Table IY, which is the reciprocal of Table V, as shown when dealing with the latter table in Chapter VIII.

Thoman's method will now be applied in order to derive Table V, or the formula relating thereto, from:-

Tablc 1, . the amount of $£ 1$ for any number of years,
and, Table $/ I I$, the amount of $£ 1$ per amum in any number of years, taking, in each case, a period of 10 years, and a rate of accumulation of 5 per cent. per amum, as follows:-

> Table 1, amount of $£ 1 \quad \ldots \quad \ldots \quad . . .16289$ or R^{N}
> Table LIL, amount of £1 per annum ... 125ヶ~~9 or $\frac{\mathrm{R}^{\mathrm{N}}-1}{\gamma}$

The annuity which $£ 1$ will purchase is obtained by dividing 16289 by 125559 , and the formula corresponding thereto may also be obtained by dividing the corresponding formula as follows : -

$$
\text { Table } V=\frac{\text { Table } I}{\text { Tiable } 11 I}=\frac{1.6289}{12.5779}=\frac{\mathrm{R}^{\mathrm{N}}}{\mathrm{R}^{\mathrm{N}}-1} .
$$

r
Stated in actual values:-

$$
\text { Table } V=\frac{1 \cdot 6289}{12 \cdot 5779}=0 \cdot 1295
$$

as may be found by actual calculation, or obtained by direct reference to Table V.

Stated in terms of the abore formule: -

$$
\text { Table } V=\frac{R^{\mathrm{N}}}{R_{r}^{\mathrm{N}}-1} \text { or } \frac{\mathrm{R}^{\mathrm{N}} \cdot}{\mathrm{R}^{\mathrm{N}}-1}
$$

which is the formula relating to 'Table V , as shown in Chapter VIII, giving the annuity which $£ 1$ will purchase for any number of years. But Thoman's symbol a^{n}. although expressed in logarithmic form, represents the same factor: therefore the formma relating to Table Y, as derived in Chapter ITII, from the simple formula $\Lambda=1 R^{N}$, may be replaced by Thoman's s.mbol 1^{n}, with the result that:-

$$
\text { Table } V=\frac{R^{N} r}{R^{N}-1}=\prime^{\prime \prime} \text { of Thoman. }
$$

The above formula, relating to Table V, contains the three factors, R^{N}, r, and ($R^{N}-1$), ahready refered to and fully explained in previons chapters, in order to express the relation between the respective amomets and present values of $£ l$, and
of $£ 1$ per annum. Thoman, by adopting the symbol a^{n}, eliminates the factor ($\mathrm{R}^{\mathrm{N}}-1$) altogether.

The factor $\left(R^{N}-1\right)$ may, however, be ascertained from Thoman's tables if required as follows:-

$$
\left(\mathrm{R}^{\mathrm{N}}-1\right)=\frac{\mathrm{R} \mathrm{~N}^{\mathrm{r}} r}{u^{n}}
$$

or by logarithms:

$$
\log \cdot\left(\mathbf{R}^{\mathrm{N}}-1\right)=\log \cdot R^{\mathrm{N}}+\log \cdot r-\log \cdot a^{n}
$$

and Thoman's a^{n} may be found from the above factors, as follows:-

$$
\log \cdot a^{n}=\log \cdot \mathrm{R}^{\mathrm{N}}+\log \cdot r-\log \cdot\left(\mathrm{R}^{\mathrm{N}}-1\right)
$$

The whole of the formule previously ascertained by derivation from the simple formula $\Lambda=P R^{N}$, may now be expressed in terms of Thoman's factors of R^{N}, and a^{n}, as follows:-

Table 1. $\quad \mathrm{R}^{\mathrm{N}} \quad$ The amount of $£ 1$:will be expressed be Thoman's factor R^{N}

Table 11. $\quad \frac{1}{\mathrm{R}^{\mathrm{N}}}$ The present value of $£ 1$: -

$$
\text { will be expressed by Thoman's factor } \frac{1}{\mathrm{R}^{5}}
$$

Table III. $\left(\frac{\mathrm{R}^{\mathrm{x}}-1}{r}\right)$ The amount of $£ 1$ per anmum:-
It has been proved that:-

$$
\text { Table } V=\frac{\text { Table I }}{\text { Table III }}
$$

And transposed, it will be seen that:-
Table III = $\begin{gathered}\text { Table } I \\ \text { Table } \mathrm{V}\end{gathered}$
but Table $\mathrm{I}=\mathrm{R}^{\mathrm{N}}$
and Table $V=a^{n}$
Therefore Table III will be expressed
by Thoman's s!mbols $\quad \frac{\mathrm{R}^{\mathrm{N}}}{u^{n}}$

Table Il. $\binom{\mathrm{R}^{\mathrm{N}}-\mathrm{J}}{\mathrm{R}^{\mathrm{N}} \cdot}$ The present caluc of $\mathfrak{t} 1$ per anmum:-

> It has been proved in Chapter VIII, that Table IV, is the reciprocal of Table V: and it has been shown above, that Table Y, is expressed by Thoman's symbol, a^{n}.

Therefore T'able IV will be expressed
ly Thoman's factor
Thble T. $\binom{\mathrm{R}^{N}}{,\mathrm{R}^{\mathrm{N}}-1}$ The ammuity which $\in 1$ will purchase:This, as shown above, is the equiva-
lent of Thomans factor ϵ^{n}
The above formule by Thoman may be stated logarithmically as follows, using the logs. of a^{n} increased by 10 , as given in Thoman's tables:-

$$
\begin{aligned}
& \text { Tible } I=\mathrm{R}^{\mathrm{N}}=\log \mathrm{R}^{\top} \\
& \text { Table } I I=\frac{\mathrm{I}}{\mathrm{R}^{\mathrm{r}}}=\log 1=0-\log \mathrm{R}^{\mathrm{S}} \\
& \text { Tuble } I I I=\frac{\mathrm{R}^{\mathrm{N}}}{\epsilon^{\prime \prime}}=\log \mathrm{R}^{\times}-\log \epsilon^{n}(\text { (udd 10) } \\
& \text { Trble } I V^{r}=\frac{1}{\prime \prime^{\prime \prime}}=\log 1=0-\log u^{\prime \prime}(\text { add } 10) \\
& \text { Toble } V^{r}=u^{n}=\log a^{n}(\text { deduct } 10)
\end{aligned}
$$

and any problem may be solved by adding to, or deducting from, the log. of the given sum $1 m^{2}$ ammity the logs. of $\mathrm{R}^{{ }^{-}}$and $u^{\prime \prime}$ as given hy Thoman, as shown in the varions standard ralculation forms prepared by the athor given in Chapter X.

In using the above log. formule it is impertant to hear in mind the previons remarks as to the addition of 10 to the log. of 1^{n} in the tables ber Thoman, and the following examples will make the matter dear. It affects omly Tables IlI, IV' and 1 .

Taking the figmes relating to a period of 10 rears and a rate - of acemmatation of 5 per cent. in each "ase, the above log. formuler will now be applied to find the amounts given in those tables, which, of comrse, relate to $£ 1$ only: -

Table 111．Required the amount of $\mathfrak{£} 1$ per annum for 10 years at 5 per cent．

Calculation（VI） 1.

$$
\begin{aligned}
\log \cdot \mathrm{R}^{\mathrm{N}}+10 \ldots & =10 \cdot 21189: 30 \\
\text { deduct Log. } u^{n} \ldots \quad \ldots & =9 \cdot 1122851 \\
&
\end{aligned}
$$

which is the Log．of ．．．．．．£125：～9

Table 1 V ．Required the present value of $£ 1$ per annum for 10 years at 5 per cent．

Calculation（VII） 1.

$$
\begin{aligned}
& \text { Log. } 1=0+10 \ldots=10 \cdot 0000000 \\
& \text { deduct Log. } a^{n} \ldots \quad \ldots=9 \cdot 112 \text { 28.5 } \\
& 0.887 \text { 1149 } \\
& \text { which is the Log. of £った?17 }
\end{aligned}
$$

The above examples show，that in using the logs．of a^{n} as given in Thoman＇s tables in conjunction with the log．formule relating to Tables II［ and IV，the log．of a^{n}（which is increased be 10 in the tables），is deducted，and consequently 10 must be added to the resulting log．，but it is immaterial where 10 is added．In the abore example 10 has been added to the log． of R^{N} as given in Thoman＇s tables．

In the case of Table V ，the factor a^{n} represents the values given in the table，and as Thoman＇s logs．are increased by 10 ， it only remains to deduct 10 therefrom in order to find the true log．of the annuity required．

In previous chapters dealing with Tables I to V and in the following chapters dealing with other calculations，the formula and rules relating to the method by Thoman will be found at the head of each chapter，without any further explanation．

CHAPTER X.

standard calculation fordis, prepared by THE AUTHOR.

The five publisied tables of confound interest. The tiree methods of callollition in each form and the correstonding rules reliting tiereto. Meaning of all syabols and factors, and tie various methods of finding the actual hog. valees. Six staxdard forms, with references to the abote and list of problems to which each may be applied. Also standard calctlation forms to find tife exact or approximate rate per cent. or sumber of yedrs, in convection witil eacil of the five tables of compound interest and the sinking fund instalment.

The five standird thbles of compocid interest relating to tile hmocyt and fresent ralue of $£ 1$, and of $£ 1$ per anyum.

Table 1. The amount of $£ 1$ in amy number of years. Chapter II, Form 1.

Table 11. The present value of $\mathfrak{£ 1 \text { due at the end of any }}$ number of years. Chapter T, Form 11.
Table 111 . Ther amount of $\mathfrak{E 1} 1$ per cumum in any mumber of yfurs.

C'hapters T'I and XIII, Forms III and IIl.r.
Table 11 . The present calue of $£ 1$ per annum for any number of gears. Chupter ITll, Form IT.
Table 1. The ammity which $\in 1$ will purchase for any number of years. Chapter 「llI, Form T .

In these tables the artual ralues only are gencrally given. and not their logarithmie squivalents which are foum in the tables of 1 . Félor Thoman.

In actual practice, extending over many years, the author nas repeatedly felt the want of a uniform system of making the various calculations, and at the same time a means of aroiding frequent references in order to ascertain the particular method to be adopted.

The absence of such a standard was not felt so much when the problems occurred only occasionally, but during the compilation of this book such a large number of calculations had to be made that some such standard became imperative if only as a means of saring the labour involved in re-writing the mere framework of each. The result is the sin standard forms used throughout the work which are useful not only as blanks to be filled up, but also because they contain the formula relating to each of the above five tables of compound interest. Each standard form includes three methods of calculation-namely (A) ly formula, (B) by the published mathematical tables, and (C) 1 y 'Thoman's tables, and these methods are based upon the three rules stated both by formula and in words at the head of the chapter dealing with each of the five tables of compound interest. In order to bring together the whole of the formulæ, symbols and rules, as well as the methods adopted, a series of notes hare been made showing, firstly, the meaning of all the symbols and factors, and, secondly, the method of finding the rarious factors used in the calculations. The object of doing this is to render this chapter a complete guide to anyone requiring to make similar calculations, who is not sufficiently interested in the subject to become more fully acquainted with the derivation of the formulre. Finally, in order to indicate the particular form required a fairly comprehensive list has been prepared of the problems which have in the book been solved by the use of each standard form. The forms are numbered to correspond with the five tables of compound interest given in the published tables. Each form contains a short heading of the problem as stated in the tables. It is here advisable to mention that form $3 x$ for finding the annual sinking fund instalment is based upon Table III; and form 5 may be used to find the equal annual instalment, of principal and interest combined, to repay a given loan in a stated number of years.

If any of the calculations involve recurring periods less than one year, the necessary alteration may be made by taking the number of periods and a correspondingly reduced rate per cent., in other words, the rate per cent. per annum in the published tables becomes the rate per cent. per period. This is where the
methot by formula will be fomd invaluable, inasmuch as in many cases the rate per cent. per period will probably not be found worked out in any of the published tables.

Tief Three Methons of Calctlation in Each Form.

A. By formula-Rule 1. The method of making the calculations in this mamer is fully explained in the following notes and in the standard forms.
B. By the published tables of rompound interest-Rule 2. The first step is to ascertain from the tables the actual ralues relating to $£ 1$ under similar conditions as to period and rate per cent. This amount, multiplied by or divided into the sum in respect of which the caleulation is to be made, gives the result required.
C. By Thoman's Tables-Rule 3. This method is fully described in the standard forms, and consists merely of various combinations of the logs. of R^{N} and a^{n} and of the amounts in the problem. Thoman's tables are fully described in Chapter IX. If the results be required to be correct to the utmost derimal point the method by 'Thoman should be adopted because these tables give the actual log. ralues.

A full explanation of the rules in each form is given at the head of the chapter dealing with the subject matter of each form.

The Rate Per Cext. and the Nomber of Years. In addition to the six standard forms, the author has prepared ten forms showing the methods of determining the rate per cent. and the mmber of years in comertion with earll of the five tables of compound interest and the sinking fund instalment. These latter forms earlo eontain particulars of an example, worked out in full in the book and to whieh a reference is made.

It will be noticed that the results obtained are in sereral cases approximate only, especially as regards the rate per cent. as expressed hy the factors R and r, which, however, fan be determined to any reguired degre of acruracy only her methods which are far too technieal to be included in a work of this nature. For all practical purposes an aproximation of the rate per rent. is sufficient, and this may generally be obtained
from the published tables of compound interest giving either the actual values or their logarithmic equivalents. This difficulty in finding the exact rate per cent. arises only in the case of an amnuty or other periodic payment. In the case of the amount and present value of a sum of money [Tables I and II] the calculation is a simple one depending upon the ralue of R^{N}. If the value of this be known as well as one of the factors, the other may be found as shown in the following standard forms for finding the rate per cent. and number of years. The factor relating to all amuities is $\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)$ and represents the amonnt of ± 1 per annm at the end of N years. The rate per cent. cannot be determined exactly from this factor, and the method by approximation is too long. The practical method of finding the approximate rate per cent. of accumulation of an annuity is to reduce the actual example to terms of an annuity of $£ 1$ as given in the various published tables of compound interest. Having done so, a reference is made to the tables and the nearest figure ascertained. This figure is adopted in the calculation, and if necessary the resulting error is calculated and corrected. An example of this may be foum on referring to Chapter XXXII, where the effect of taking the equated period at 23 , instead of $23 \cdot 136$ years, is fully explained and accounted for.

Other Methods of Calctation. In addition to the problems which may be solved by means of the standard forms included in this chapter there are several others which oceur in the course of the hook, and which are fully explained as they arise. In all cases the calculation has been made in such a form that it may be adapted to any similar problem, and it is not necessary to repeat the forms here. The following list includes the whole of these special calculations:-
(1) A stated sum is reguired to be set aside and aecumulated at compound interest for a stated number of years. At the end of that time the anmual sum reases, but the amount then in the fund continues to aceumulate for a further stated term. The rate of aceumulation may be raried or not at the curd of the first period. It is required to ascertain the amount in the fund at the end of the second period.

Statement XVI. D. 1.
(2) A stated amount is required to be provided at the end of a prescribed period by the aceumulation of an annual sum
to be set aside during the early years of such period only. The amount then in the fund will continue to accumulate until the ent of the prescribed period. It is required to ascertain the amual amount to be set aside during the first part of the prescribed periorl.

Calculation (XXXIV) G.
(3) A stated ammal sum to be set aside for a prescribed period and accumulated at a definite rate per cent., is sufficient to proride a stated amount at the end of that period. Before the expiration of the period a change is made in the conditions affecting either the period or the rate per cent., or both, but not the amount to be provided. It is required to ascertain by one calculation the equivalent future ammal sum under the amended conditions.

Statement XXVI. D.
Symbols. The following is a complete list of the symbols used in the various formulæ, and in the standard calculation forms, with the meaning of each symbol, all of which have been fully described in Chapter III:-

A denotes the amount or ultimate sum to which the present sum P will accumulate in N years at the ratio or common factor R. It represents both the ultimate sum, to which a stated present sum will amount at the end of the period, as well as the stated sum, due at the end of the period, of which the present ralue P is refuired.
P denotes the principal sum in hand: and represents also the present value of a definite sum of moner I due at the end of a stated period of years; it denotes also the present value of an annuity or other periodic sum, $A y$, payable at the end of each of a stated number of rears or periods N.

If denotes the ratio or common factor existing between each temm of the progression, or the amomes of $£ 1$ at the end of each succeeding year. It is in all cases $£ 1$ increased ly interest upon $£ 1$ for one year at the rate per cent. in question. It corresponds with the algebraical factor r.
r denotes the interest upon $£ 1$ for one year or period at the stated rate per cent. It is always less than the ahove factor R, by mity.

$$
\mathrm{R}-1=r .
$$

The actual rate per cent. is never used in calculations involving compound interest, hut is always expressed in
its relation to $£ 1$ only, as R , and r, above. This term r is not the equivalent of the algebraical factor r, in a geometrical progression.
N denotes the number of years, or other equal periods, and must not be confounded with the factor n in the algebraical formula for a geometrical progression which represents the number of terms in the progression. For this reason it is expressed by a capital letter. This term is the equivalent of the algebraical term $n-1$.
Ay denotes the annuity or other periodic sum to be paid, set aside or received at the end of each year or period, N.
M denotes the sum to which the annuity or other periodic sum $A y$ will amount, if accumulated for a stated number of years or periods, N, at a stated rate per cent.

Formule. The above symbols are combined in various ways in the formulæ given in the book resulting in various factors, and the following list has been prepared in order to show the meaning of such factors, and also the manner in which they may be found, not only in actual values, but also in their logarithmic equivalents.

The numbers in brackets in the author's standard calculation forms in this chapter refer to the following notes:-

Note Symbol or factor Remarks
(1) $\mathrm{R}=$ ratio.

This may be found by adding to $£ 1$, interest upon £l for one year; and the log. of R may be found from the log. tables or from the special table of those logs. giren in Chapter V.
(2) $r=$ interest upon $£ 1$ for one year.

This may be found by deducting unity from the value of R above, and the log. of r may be found, as in note (1).
(3) $\quad \mathrm{R}^{\mathrm{N}}$.

This symbol corresponds with the symbol r^{n} of Thoman. The log. of R^{N} is found by multiplying the \log. of R by the number of years or periods. The logs. of R^{N} are given in Thoman's tables. The actual values of R^{N} are given in Table I.

Note	symbol or factor
(ia)	$\frac{1}{R^{N}}$.

(4) $R^{N}-1$.
(5) $\quad \frac{\mathrm{R}^{\mathrm{N}}-1}{r}$

Remarks
This factor will rery rarely, if ever, be required to be found by calculation. The actual values are given in Table II. The log. of this factor may be found by derluting the log. of R^{N} from 0 .

The actual ralues of this factor are not given in Inwood or other published tables, although they may be found by deducting unity from the values giren in Table I. The \log. of this factor is not giren in 'Thoman's tables, but may be foumd by converting the log. of R R^{N} there stated into its equivalent ordinary number or antilog., dedurting unity therefrom, and finding the log. of the remainder. The log. of $R^{N}-1$ so found may be proved by Iuwood, by deducting unity from the amount giren in Table I, and finding the log. of the remainder. The log. of $\mathrm{R}^{\mathrm{N}}-1$ may be found ly Thoman's tables as follows:-

Log. $\mathrm{R}^{5}+\log . r+10-\log \cdot a^{n}$.
log. r being found, as explained in note (2) above.

The actual values of this factor are given in Table III in Inwood. The logs. of this factor may be found by 'Thoman's tables as follows:-

$$
\text { Log. } 1^{N}+10-\log \cdot a^{n}
$$

The actual values of this factor are geiven in 'Table I ' in Inwood or other similar tables. The logs. of this factor may be found from 'Thoman's tables by deducting the log. of a^{n}, there given, from 10 .

Note
Remarks

$$
\begin{equation*}
\frac{R^{N} r}{R^{N}-1} \tag{i}
\end{equation*}
$$

The actual ralues of this factor are given in Table V in Inwood or other similar tables. The logs. of this factor may be found from Thoman's tables by deducting 10 from the log. of a^{n} there given.
(8) $\quad a^{n}$. This is a term employed by Thoman to denote the annuity, $\dot{£} a$ per annum, which $£ 1$ will purchase for n years; and the actual values of which are given in Table V. The logs. given in Thoman's table are as explained in Chapter IX, the true logs. of a^{n} increased by 10. The relations between a^{n} aud the abore symbols are explained briefly in the foregoing notes and fully in Chapter LX. This factor is extremely useful for finding the equal anuual instalment of principal and interest combined (the annuity method, Chapter XII).

Standard Calculation Form, No. 1.

Table I. To find the future amount of a present sum.
Chapter IV.
This form has been used in the solution of problems of the following nature:-

To find the amount of loan which will be provided by the future accumulation of the present investments representing a sinking fund ... (XT) 4.
To find the amount of loan which will be unprovided for if an ascertained deficiency in a sinking fund remains uncorrected

Calculation.

```
(土V)6.
```

To find the amount of loan which will be provided by the future accumulation of the proceeds of sale of assets paid into the fund (XVII) ? .

Standard Calculation Form, No. 1.

Table I. To find the future amount of a present sum. The following rules are explained at the head of Chapter IV. Here state the general nature of the problem.

Calculation No.
Here state full details of the actual problem.

Required future amount, £
(B) By Table I. $\quad \mathrm{A}=\mathrm{P} \mathrm{R}^{\mathrm{N}} \quad$ Rule 2.

Table I. years	per cent.	
Amount of $£ 1$	(3)	R^{N}
\quad add \log. Present Sum	P	
	A	

Required future amount, $£$

| (C) By Thoman`s Table. |
| :--- | :--- | :--- |
| per cent. |$\quad \mathrm{A}=\mathrm{PR}^{\mathrm{N}} \quad$ Rule 3.

Required future amount, £

The Amount and Present Value of One Pound.

Tables I and II.
Standard Forms, 1 and $\mathfrak{2}$.
To find the number of years:
based on Calculation (XYI) 5.
Given factors:

Present sum \ldots	\ldots	P	$9469 \cdot 00$	
Amount thereof	\ldots	A	$112: 99.07$	
Rate per cent.	\ldots		33	
Ratio \ldots	\ldots	\ldots	R	1.035
Interest of $£ 1$	\ldots	r	0.035	

Details of Method:

find find,		Log. A	1123900	4.0507305
	and deduct	Log. P	$946: 30$	39760288
	difference	Log. R^{N}		0.0747015
find		Log. R.	1.035	0.0149403

To find the number of years, divide the above log. of R^{N} by the above \log. of R, as described in Chapter MXXII, and the quotient is the number of years required, in this case, 5 years.

The Amount and Present Value of One Pound.

Tables I and II. Standard Forms, 1 and 2.
To find the rate per cent:
based on Calculation (XV) 4.
Given factors :

Present sum \ldots	\ldots	P	9463.00
Amount thereof	\ldots	A	14799.71
Number of years	\ldots	N	1%

Details of method :
find $\quad . . . \quad . . \quad . .$. Log. A 1479971 4.1702533
find, and deduct \ldots Log. P $9463 \cdot 00 \quad 3.9760288$
difference.. Log. $\mathbf{R}^{\mathrm{N}} \quad 0 \cdot 1942245$
divide this log. by the number of years
which is the \log. of ...

N	13	0.0149403
R	1.035	

To find the rate per cent., deduct unity from the above ratio and multiply the remainder by 100 , or $3 \frac{1}{2}$ per cent.

Standard Calculation Form, No. 2.

Table II. To find the present value of a sum due at a future date.

Chapter V.

This form has been used in the solution of problems of the following nature:-

To find the sum now payable which is the equivalent of a given loan payable at the end of a prescribed number of years.

See Chapter XXXII.

Given a stated sum, to find the accumulated amount of an annual instalment, to be set aside for a limited period only; the amount so found to accumulate for a further stated period, and then amount to the stated sum. "The method by step" $. . . \quad . . \quad . . \quad . . \quad ~(X V I) 3$.

The annual instalment is then found by means of standard form, No. :3x (XVI) 4.

The methods of finding the rate per cent, and the number of years are similar to those given under Table I.

Standard Calculation Form, No. 2.
Table II. To find the present value of a sum due at a future date.
The following rules are explained at the head of Chapter V.
Here state the general nature of the problem. Calculation
No.
Here state full details of the actual problem.

Required present value, $£$

	By Table II.	$\mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{\mathrm{x}}}$	Rule 2.
Tabl	II. years per cent. Present value of $£ 1$ (3a) add Log. Future Sum	1	
		$\overline{R N}$	
		1	
		P	
	Required present value, $£$		
(C)	Bỵ Thoman's Table. per cent. years	$\mathrm{P}=\frac{\mathrm{A}}{\mathrm{R}^{\text { }}}$	Rule 3.
	Log. Future Sum deduct Log.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{R}^{\mathrm{N}} \end{aligned}$	
		P	

Required present value, £

Standard Calculation Form, No. 3.

Table III. To find the amount of an anuity. Chapter VI.

This form has been used in the solution of problems of the following nature:-

Calculation.
To find the amount which should stand to the credit of a sinking fund at any time during

To find the amount of loan which will be provided by the future accumulation of :-
(1) the original annual sinking fund instalment (NV) 5.
$(\boldsymbol{\sim})$ the additional, augmented, or reduced anmual sinking fund instalment (XYT) $\mathfrak{2}$.
(3) the income from the present investments representing the fund...\quad... (XIX) 1 .
(4) the annual increment of the fund \ldots (XIX) 4 .

Standard Calculation Form, No. 3.
Table III. To find the amome of an annuit.
The following rules are explained at the head of Chapter 'II.
Here state the general uature of the problem. C'alculation No.
Here state full details of the actual problem.

(A) By Formula. $\quad \mathrm{M}=\mathrm{A}$	$1 y\left(\frac{\mathrm{R}^{\mathrm{x}}-\mathrm{i}}{!}\right)$	Rule 1.
	l'alues.	Logs.
	R	
	N	
	R^{N}	
$\mathrm{R}^{\mathrm{N}}-1 \quad$Convert Log. to ordinary number deduct unity	$\left\lvert\, \begin{array}{ll} \mathrm{R}^{\mathrm{N}} & \\ -1 & 1 \end{array}\right.$	
Log. of this is (t)	$\mathrm{R}^{\mathrm{x}-1}$	
Log. Annuity	Ay	
add $\log . \mathrm{R}^{\mathrm{N}}-1$ above	$\mathrm{R}^{\mathrm{N}}-1$	
deduct Log.r (2)		
	r	
	II	
Required future amomet, £		
(B) By Table III. $\quad \mathrm{M}=\mathrm{Ay}\left(\mathrm{R}^{\mathrm{x}}-1{ }^{\frac{1}{r}}\right)$		Rule 2.
Table III. years per cent. Amount of $\dot{\ell} 1$ per anmum (5) add Log. Annuity	$\mathrm{R}^{\mathrm{N}}-1$	
	r	
	A. y	
	If	
Required future amount, $£$		
(C) By Thoman's Table. $\quad \mathrm{II}=\mathrm{Ay}\left(\frac{\mathrm{R}^{x}}{\mathrm{a}^{n}}\right)$		Rule 3.
Log. Amuity add Log. $\dot{\mathrm{R}}^{\mathrm{N}}$ in Table +10 (3)	A.y	
	R^{N}	
deduct Log. a^{n} (8)	$\lambda_{y} / \mathrm{R}^{\mathrm{an}}$	
	M	
Required future amour	int, £	

The Amount of One Pound per Annum.

Table III.
Standard Form 3.
To find the number of years:
based on Calculation (XIIII) 4.
Given factors :

Annuity	Ay	750000
Amomit of ammuity	11	$5 \mathrm{~F}+68 \cdot 4$
Rate per cent.		300
Ratio ...	R	1.0:3
Interest of $£ 1$	r	0.0:3

Details of Method:
find Log. M 5it684 48 4.594297
find, and deduct ... Log. Ay $i 500 \cdot 00$: 3850613
difference ...
find, and add... ... Log. r こ. 4771213
the sum is \ldots Log. $R^{\mathrm{N}}-1$ 1.3614897
find ralue of this log.
$0 \cdot 29957$
add mity ...
1.
which is the value of $\ldots \quad R^{N} \quad 12998$ -

find	\ldots	\ldots	\ldots	$\log . R^{N}$		
find	\ldots	\ldots	\ldots	Log. R	\quad	0.0898606
:---						
0.0128372						

To find the number of pears, divide the above \log. of R^{N} by
the above log. of R, as described in chapter XXXII, and the quotient is the number of years required, in this case, i years.

The Amount of One Pound per Annum.

Table III.
Standard Form 3.
To find the rate per cent :

> based on Calculation (XVIII) i.

Given factors:

Amount of amnuity	M	117658
Annuity	I!	5x:3\%15
Number of rears		16

Details of method:

find	Log. M	117658	30100041
find, and derluct	Lag. Ay	58:3615	1-766:008
difference			$1 \because 304293$
find ralue of this log.		$20 \cdot 1569$	

which is the amomet of an ammity of one pound for 16 years at the required rate per cent.

To ascertain the rate per cent., refer to Table III, giving the amounts of one pound per ammm, and find the nearest ralue to the above amount of $20 \cdot 1569$ in 16 years. If the rate so found is not near enough, refer to Thoman's tables and find the nearest \log. to $1 \because 30+4239$, which is ascertained by deducting the log. of 1^{n} from the log. of R^{N}, plus 10 .

> Required rate per annum, ? per cent.

Tote. In cases where the rate per cent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

Standard Calculation Form, No. 3x.

Table III. To find the amual sinking fund instalment. Chapter XIII. This form has been used in the solution of problems of the following nature:-
To find the annual sinking fund instalment, to be set aside out of revenue or rate, and accumnlated at compound interest, to repay a stated loan at the end of a prescribed period

Calculation.
(XV) 1.

To find the ammity which will amome to a stated sum in any number of years...
To find the additional annual sinking fund instalment required to provide the amount of loan which will be umprovided for owing to a deficiency in the amount in the fund
To find the amount by which the original anmal sinking fund instalment may be reduced in consequence of the withdrawal, during the repayment period, of part of the loan from the operation of the fund ...

```
(XVIII) 1.
```

To find the future ammal increment to be added to the fund, and accumulated at compound interest, to provide the balance of loan, which will not be provided by the future accumulation of the present investments representing

Standard Calculation Form, No. 3x

Table III. To find the anmual sinking fund instalment. The following rules are explained at the head of Chapter XIII. Here state the general nature of the problem. . Calculation No.
Here state full details of the actual problem.

(A) 13	By Formula \quad Ay $=$ I	If $\left(\frac{r}{R^{x}-1}\right)$	Rule 1.
$\stackrel{\text { Log }}{\mathrm{R}^{\mathrm{x}}-1}$		Values.	Logs.
	$\left(\begin{array}{l}\text { Log. Ratio } \\ \text { I/ultiply } \\ \text { Log. } \\ \text { R by }\end{array}\right.$	$\underset{\mathrm{N}}{\mathrm{R}}$	
	Multiply Log. Mby		
	- (3)	R^{N}	
	1 (Convert Log. $\begin{gathered}\text { to ordinary number } \\ \text { deluct unity }\end{gathered}$	$\mathrm{R}_{-1}^{\mathrm{N}}$	
	Log. of this is (4)	$\frac{\mathrm{R}^{\mathrm{N}}-1}{}$	
	Log. Amount of Loan add Log. r (2)	M	
deduct Log. ($\mathbf{R}^{\mathrm{N}}-1$) above		M r	
		$\mathrm{R}^{\mathrm{N}}-1$	
		Ay	

Required annual instalment, $£$
(B) By Table III. $\quad A_{y}=\frac{M}{R^{3}-1} \quad$ Rule 2.

$\begin{aligned} & \text { Log. Amount of Loan } \\ & \text { Table III. rears per cent. } \\ & \text { Amount of } \dot{*} 1 \text { per annum (5) } \\ & \text { deduct Log. } \end{aligned}$	$\begin{aligned} & \mathrm{NI} \\ & \mathrm{R}^{\mathrm{N}}-1 \end{aligned}$	
	r	
	Ay	
Required ammal instalment, $\mathfrak{£}$		
(c) By Thomans Table. Ay per cent. years	$y=M\binom{u^{\prime \prime}}{R^{x}}$	Rule 3.
Log Amount of Loan	$\begin{aligned} & x[\\ & a^{n} \end{aligned}$	
$\begin{aligned} & \text { decture Log. } \mathrm{R}^{\mathrm{N}} \text { in } \\ & \text { Table }+10 \end{aligned}$	M ι^{n} R^{x}	
	Ay	

The Sinking Fund Instalment.

Table III. Standard Form, 3x.

To find the number of years :
based on Calculation (XV) 1.

Given factors:

Amount of loan	\ldots	M	26495
Annual instalment	A $!/$	$680 \cdot 2: 34$	
Rate per cent.	\ldots		$3 \frac{1}{2}$
Ratio \ldots	\ldots	\ldots	R

Details of Method:

find find, and deduct .	$\begin{aligned} & \log . \mathrm{M} \\ & \log . A y \end{aligned}$	$\begin{aligned} & 26495 \\ & 680 \cdot 234 \end{aligned}$	$\begin{aligned} & 4 \cdot 4231639 \\ & 2 \cdot 8326581 \end{aligned}$
difference ... find, and add... ...	Log. r		$\frac{1}{2} \cdot 5905058$
the sum is	Log. $\mathrm{R}^{\mathrm{N}}-1$		$\overline{0} 1345728$
find value of this \log. add unity ...		$\begin{aligned} & 1: 36324 \\ & 1 \end{aligned}$	
ich is the value of ... find	$\begin{gathered} R^{N} \\ \log \cdot R^{N} \end{gathered}$	236324	$0 \cdot 3735087$
find	Log. R		$0 \cdot 0149403$

To find the number of years, divide the above log. of R^{N} by the above \log. of \boldsymbol{R}, as described in Chapter XXXII, and the quotient is the number of years required, in this case, 25 years.

The Sinking Fund Instalment.

Table III.
Standard Form, 3x.

To find the rate per cent:

based on Calculation (XT) 1.

Given factors:

Amount of loan ...	M	$\mathfrak{2} 6495$
Ammal instalment	Ay	680.9 .9.
Number of years ...	I	25

Details of method :

which is the amount of loan which will be providel by an annual instalment of one pound for 25 years at the required rate per cent.

To ascertain the rate per rent, refer to Table III, giving the amounts of one pound per anmm, and find the nearest value to the abore amount of 3894986 in 25 years. If the rate so fomnd is not near enough, refer to Thoman's tables and find the nearest log. to 1590.5058 which is ascertained b deducting the log. of a^{n} from the \log. of R^{N}, plus 10 .

Required rate per annum, $3 \frac{1}{2}$ per cent.
Vote. In cases where the rate per cent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

Standard Calculation Form, No. 4.

Table IV. To find the present value of an amuity.

> Chapter VII.

This form has been used in the solution of problems of the following nature:-
To find the sum now payable which is the equivalent of the future ammal sinking found instalments to be set aside to repaly a given loan at the end of a preseribed period of years ; and for whirlh such ammal instalments might be redeemed See Chapter XXXII.

Standard Calculation Form, No. 4.

Table IV. To find the present value of an annuity. The following rules are explained at the head of Chapter VII. Here state the general nature of the problem.

Calculation No. Here state full details of the actual problem.

(A) 13	Formula. $\mathrm{P}=\mathrm{A}$	$y\left(\frac{\mathrm{R}^{\mathrm{x}}-1}{\mathrm{R}^{\mathrm{x}} \mathrm{r}^{r}}\right)$	Rule 1.
$\stackrel{\log }{\mathrm{R}^{\mathrm{N}}-1}$	$\left(\begin{array}{l} \text { Log. Ratio } \\ \sqrt{1 / u l t i p l y ~ L o g . ~ R ~ b y ~} \end{array}\right.$	Tolucs.	Logs.
		12	
		N	
	Concert Log. to ordinary numbes deduct inity	R^{N}	
		R^{N}	
	Log. of this is (4)	$\frac{1 i^{N}-1}{}$	
	Log. Annuity adel Log. $\left(\mathbf{R}^{\mathrm{N}}-1\right)$	Ay	
	above (4)	$\mathrm{R}^{\mathrm{N}}-1$	
	decluct $\log \cdot \mathrm{R}^{\mathrm{N}}$ above	R^{N}	
	deduct Log.r (2)	r	
		P	
	Rerpuired present value, £		
(B) B	Table IV. $\mathrm{P}=$	$y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{\mathrm{R}^{\mathrm{x}} \mathrm{r}}\right)$	Rule 2

percent. years	
Log. Ammuity	A_{y}
add 10	
deduct Log. ι^{n}	(8)
Required present value, $£$	

The Present Value of One Pound per Annum.

Table IV. Standard Form, 4.

To find the number of years :

based on Calculation (XVIII) 14.

Given factors :

Annuity	\ldots	\ldots	$\mathrm{A} y$	40.215
Present value thereof	P	313.118		
Rate per cent.	\ldots		3	
Ratio \ldots	\ldots	\ldots	R	1.03
Interest of	$£ 1$	\ldots	r	0.03

Details of method ;

find	Log. P	$313 \cdot 118$	24957086
find, and deduct	Log. Ay	$40 \cdot 215$	1.6043881
difference			$0 \cdot 8918205$
find value of this log		7•7861	

which is the present value of an annuity of one pound, at
3 per cent., for the required number of years.

To ascertain the number of years, refer to Table IV giving the present values of one pound per annum, under 3 per cent., and find the nearest value to the above amount of ris661. If the rate per cent. is not given in the tables, refer to Thoman's tables, under the nearest rate per cent., and find the nearest log. to 08913205 , which is found by deducting the log. of a^{n} there given from 10 .

Required period, 9 years.
Note. In cases where the rate per cent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

The Present Value of One Pound per Annum.

Table IV.
Standard Form, 4.

To find the rate per cent:

based on Calculation in Statement XXXII. D.

Given factors:

| Annuity $\quad .$. | A | 1725.58 |
| :--- | :--- | :--- | :---: |
| Present value thereof | P | $28: 374.73$ |
| Number of years ... | N | 23 |

Details of method :

find	Log. P	28374.73	$4 \cdot 4529318$
find, and deduct	Log. Ay	1725.58	32369352
difference			12159966
find value of this log.		16 ± 436	

which is the present value of an annuity of one pound for 23 years, at the required rate per cent.

To ascertain the rate per cent. refer to Table IV, giving the present values of one pound per annum, and find the nearest value to the above present value of 16.4436 in 23 years. If the rate so found is not near enough, refer to Thoman's tables and find the nearest log. to $1 \cong 159966$, which is ascertained by deducting the \log. of a^{n} there given from 10.

Required rate per annum, 3 per cent.

Note. In cases where the rate per cent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

Standard Calculation Form, No. 5.

Table V. To find the annuity which a present sum will purchase, or the ammuity of which $£ 1$ is the present value. Chapter VIII.

This form has been used in the solution of problems of the following nature:-

Calculation.
To find the equal annual instalment of principal and interest combined, to be paid to the lender, in order to repay a stated loan in a prescribed period
(XII) 4.

To find the amount by which the original annual sinking fund instalment may be redured in consecquence of :-
(1) a surplus in the fund owing to an exeresive past aceumulation of the fund (XVIII) 10.
$(\dot{\sim})$ a surplus in the fund, due to the payment into the fund of any sum not provided out of revenue or rate, namely:-
(a) the proceeds of sale of part of the assets representing the security for the loan (XVII) I. or
(b) a realised profit upon the sale of an investment represeuting the fund.

Ton find the additional sinking fund instalment, to be set aside, and added to the fund during the unexpired portion of the repayment period, to compensate for a deficiency in the amount now in the fuml (XV) 3 .

Table V. To find the annuity which a present sum will purchase, or of which it is the present value. To find the equal amnual instalment of principal and interest combined.
The following rules are explained at the head of Chapter VIII.
Here state the gencral nature of the problem. Calculation No.
Here state full details of the actual problem.

(A) 13	By Formula. $\quad \mathrm{A} y=$	$\mathrm{P}\left(\frac{\mathrm{R}^{\mathrm{N}} r}{\mathrm{R}^{\mathrm{N}}-1}\right)$	Rule 1.
$\stackrel{\log }{\mathrm{R}^{\mathrm{N}}}$	Log. Ratio Multiply Log. R by	Tralues.	Logs.
		R	
		N	
	\% (3)	R^{N}	
	$-1 \begin{aligned} & \text { Convert Lng. } \\ & \text { to ordinary number } \\ & \text { deduct unity }\end{aligned}$	R^{N} -1	
	(4)	$\mathrm{R}^{\mathrm{N}}-1$	
	Log. Present Sum	P	
	add Log. R^{N} above (3)	R^{N}	
	Log. r (${ }_{\text {(}}$)	r	
deduct Log. ($\mathrm{R}^{\mathrm{N}}-1$) above		$1 R^{N}-1$	
		A y	
Required annuity, $£$			
(B) By Table V. $\quad \lambda_{y}=\mathrm{P}\binom{\mathrm{R}^{\mathrm{N}} r}{\mathrm{R}^{\mathrm{N}}-1}$			Rule 2.
Table V . years per cent. Amuity $£ 1$ will purchase ($\mathbf{7}$) add Log. Present Sum			
		A y	
Required annuity, $\mathfrak{£}$			
(C)	By Thoman's Table. per cent. years	$\mathrm{A}^{\prime}=\mathrm{P} a^{n}$	Rule 3.
Log. Present Sum add Log. a^{n}		$\begin{align*} & \mathrm{P} \tag{8}\\ & a^{n} \end{align*}$	
deduct 10		Ay	
Required ammity, £			

The Annuity which One Pound will Purchase and
 The Equal Annual Instalment of Principal and Interest Combined.

Table V. Standard Form, 5.

To find the number of years:
based upon Calculation (XV) 3.

Given factors:

Present sum \ldots	\ldots	P	469.74	
Annuity \ldots	\ldots	A y	45.594	
Rate per cent.	\ldots		$35 \frac{1}{2}$	
Ration \ldots	\ldots	\ldots	R	1.035
Interest of $£ 1$	\ldots	r	0.035	

Details of method:

find	Log. $\mathrm{A} y$	45.594	$1 \cdot 6589086$
find, and deduct	Log. P	$469 \cdot 74$	$2 \cdot 6718612$
difference ..			$\overline{2} 9850474$
find value of this log		$0 \cdot 097061$	

which is the annuity which one pound will purchase at $3 \frac{1}{2}$ per cent. for the required number of years.

To ascertain the number of years refer to 'Table V ', giving the annuity which oue pound will purchase, under $3 \frac{1}{2}$ per cent., and find the nearest value to the above amount of $0 \cdot 097061$. If the rate per cent. is not given in the tables, refer to Thoman's tables, under the nearest rate per cent., and find the nearest log. of a^{n} to $\overline{2} 98504 \pi 4$. This may be ascertained by an inspection of the mantissa ouly.

Required period, 13 years.

Note. In cases where the rate per cent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

The Annuity which One Pound will Purchase and
 The Equal Annual Instalment of Principal and Interest Combined.
 Table V^{2} Standard Form, $\overline{3}$.

To find the rate per cent :

based upon Calculation (XVIII) 10.

Given factors :

| Present sum \ldots | \ldots | P | $44 \cdot 27$ |
| :--- | :--- | :--- | :--- | :---: |
| Annuity \ldots | \ldots | Ay | $57 \cdot+446$ |
| Number of years | \ldots | N | 9 |

Details of method:

which is the annuity which one pound will purchase for 9 years
at the required rate per cent.
To ascertain the rate per cent., refer to Table V, giving the annuity which one pound will purchase, and find the nearest value to the above annuity of 0128434 in 9 years. If the rate so found is not near enough, refer to Thoman's tables and find the nearest log. of a^{n} to $\overline{1} \cdot 1086795$. This may be ascertained by an inspection of the mantissa only.

Required rate per ammum, 3 per cent.
Notc. In cases where the rate per rent. is not included in the published tables of compound interest, or in Thoman's tables, the above method will give only approximate results.

Section II.

The Methods of Repayment of the Loan Debt of Local Authorities and Commercial and Financial Undertakings.

CHAPTER XI.

the repayment of the loan debt of local AUTHORITIES AND Commercial and finanCLAL UNDERTAKINGS.

Alternative methods allowed by the Public Health Act, 1875, and other Acts. Comparison of methods as regards the actual repayment to the lender, and the annual charge against Revenue or Rate.

The Instalment Method.

BY AN EQUAL ANNUAL INSTALMENT OF PRINCIPAL TO BE REPAID to the lender. No Sinking Fund required, but an equal periodical repayment of principal. Anvual charge against tie Revende or Rate Account of successive years composed of an equal amount of principal and a gradually decreasing amount of interest. Statement showing the final repayment of the Loan.

Having obtained a series of rules and formulæ relating to all problems involving compound interest, they will now be applied to problems of actual finance, beginning with the repayment of the loan debt of local authorities. This affords a very good subject for treatment by the mathematical method, not only on account of the variety of the problems occurring in actual practice, but because the original conditions and regulations are of a fairly uniform character. This uniformity is much more pronounced than is the case with the loan debt of commercial and financial undertakings, where not only much more variable and elastic conditions exist, but also greater facilities to alter the original arrangements between the borrower and the lender.

Excluding for the present the provisions contained in early Acts of Parliament, which vary considerably, the general principles now in force, and governing the matter, are containerl in Section 234 of the Public Health Act of 1875. These provisions may be accepted as the standard now adopted in all
public general Acts, special Acts, and provisional orders of the Local Government Board. There are of course small variations in detail, but the principle remains in all cases substantially the same, and, with the exception of the introduction of a new form of "non-accumulating" sinking fund, there has not been any change since 1855 . These provisions relate to the repayment of the debt, and will apply equally to commercial and financial undertakings, as they are hased upon general financial practice. There is not anything new in the methods laid down in the Act, but the merit of the section lies in the fact that for the first time definite methods were prescribed in place of the very raried practice previously followed. To state an extreme case, borrowing powers will never be granted in future without any obligation whaterer as to redemption. This section specifies three alternative methods, at the option of the local authority, by which the loan debt may be repaid, and provides in effect that:-
(a) The local authority shall repay the moneys so borrowed by:-
(1) equal anual instalments of principal, or by
(2) equal annual instalments of principal and interest combined ;
or (b) The local authority shall in every year set apart as a sinking fund and accumulate in the way of compound interest such a sum as will, with accumulations in the way of eompound interest, be sufficient to pay off the moneys so borrowed within the period sanctioned.

The alternative methods of repayment are usually described as:-
(a) (1) The instalment methord.
(\mathfrak{Z}) The ammity method.
(b) The sinking fund method.

The sinking fund method in the Act of 1855 is the same as the accommating sinking fund referred to in the 1893 danses of the Local Govermment Board.

The sections of the Public Health Act, 1855, and other Acts relating to the borowing of money by local authorities lay down five distinct principles, namely:-

The power to borrow is limited to works of a more or less permanent nature.

The amount to be borrowed is limited.
The period of repayment must be fixed by the Loeal Government Board, having regard to the relative permaneney of the works.
The Public General Aets contain a provision that the period sanctioned by the Local Government Board for the repayment of any loan shall not in any case exceed a period prescribed in each Act.
The amount annually required to discharge the liability in respect of interest upon the loan and the repayment of the debt is chargeable against the rate or revenue account of each year.
There are two main distinctions to be drawn hetween the above methods (1) as regards the actual repayment of the loan, and $(\underset{\sim}{2})$ as regards the charge upon the rate or revenue accounts of the successive years of the repayment period. The instalment and amuity methods both provide for the actual repayment to the lender cach year of a definite proportion of the loan or of the loan and interest combined. The simking fund method, on the other hand, contemplates the provision ammally of an instalment of such amount as will, if set aside, invested, and accumulated for the prescribed period, provide for the repayment of the loan in one sum at the end of the period. Power is given, however, under certain conditions to apply part of the sinking fund in repayment of the loan during the prescribed period of repayment.

Each of these methods will be considered in detail, taking first:-

Tife Instalment Method, in which the loan is repaid to the lender by equal annual instalments of principal only, and interest is paid to him upon the balance of loan unpaid. This method applies mainly to adrances made to local authorities by the Publie Works Loan Commissioners, and also to loans by the larger insurance companies to the Metropolitan boroughs and other local authorities.

This method is also commonly used by commercial and financial undertakings, and is known as the deferred payment system. The hire purehase system, on the other hand, is a commercial form of the annuity method. The instalment method is exceedingly simple in operation, seeing that it is merely an arithmetical ealculation, and does not involve any question of compound interest whatever.

Generally the repayment period is 30 years or longer, but in order to simplify the problem and to enable a comparison to be made with the annuity and sinking fund methods to be hereafter described, in all cases the example will relate to the repayment of a loan of $£ 1,000$, in ten years, with interest at 5 per cent., which rate will be assumed to be payable to the lender, and will also be the rate of accumulation of the sinking fund.

As will be seen by the following statement, the municipality will repay to the lender at the end of the first year :-

$$
\begin{array}{lllllr}
{ }^{1} /{ }_{10} \text { of the principal } \ldots & \ldots & \ldots & \ldots & £ 100 \\
\text { Interest on } £ 1,000 & \ldots & \cdots & \ldots & \ldots & 50 \\
& & & & & - \\
£ 150
\end{array}
$$

and this amount will be charged to the rate or revenue account.
At the end of the second year the municipality will repay to the leuder:-

$$
\begin{array}{lllll}
1 / 10 & \text { of the principal, as before } & \ldots & £ 100 \\
\text { Interest on } £ 900 & \ldots & \ldots & \ldots & \ldots \\
& & & & \\
& £ 145
\end{array}
$$

and so on each year until, at the end of the tenth year, they will repay:-

$1 / 10$ of the principal, as before	\ldots	$£ 100$

Interest on $£ 100$... 5
$£ 105$
the effect being, as regards the municipality, that the rate or revenue account will be charged year by year with a gradually decreasing amount, to the relief of the later generations of ratepayers.

As regards the lender, he originally advanced to the municipality a sum of $£ 1,000$, which is repaid to him at the rate of $£ 100$ per anmm, which will require to be invested each year, with the result that his income will be constantly fluctuating, and he will hold a number of small investments instead of one large one. The following statement (XI. A.), shows the operation of the repayment from year to year by means of the constant instalment of $£ 100$ of principal, and also shows the decreasing amount of interest anmally paid to the lender. As the principal and the interest are both charged to the revenue or rate account, it shows the ammally decreasing. loan charge.

Similar statements will be given relating to the annuity and sinking fund methods; and, finally, a statement will be prepared
comparing the effect of the reparment hy all three methors. In the case of the instalment and annuity methods there is rint any accumulating sinking fund, and therefore there is not any complication arising from the rate of accumulation. This will be dealt with under the head of the sinking fund methot. The instalment method, so far as regards the actual repayment to the lender, is exactly similar to the ordinary reparment of debt by commercial and financial undertakings, and there is not any difference in principle if the instalments are not equal in amount or are made at unequal interrals of time. The lender receires interest earb rear, upon the artual balance owing to him, since the last date to which interest has heen paid.

Thlike the anmuity and instalment methods, there is mot any rariation in the calculation if the interest be paid halfyearly or otherwise instead of yearly. It is a simple arithmetical ralculation not complicated in any degree br compound interest.

STATEMENT XI.A.
The Reparment of Deht of Local Authorities. The Instalment Method.

Showing the repayment of a Loan of $£ 1,000$ in 10 rears, with interest at 5 per cent. $\underset{\mathrm{l}}{\mathrm{Y}}$ equal anuual instalments of principal only.

	$\mathrm{O}_{\substack{\text { Owing at } \\ \text { begin- }}}$				paymex		Balance owing at end of year	Charie to Reventa.		
$\begin{aligned} & \text { Year } \\ & \text { end. } \end{aligned}$	$\begin{aligned} & \text { ning } \\ & \text { of } \\ & \text { year. } \end{aligned}$	$\begin{gathered} \text { luterest } \\ \text { at } \\ 5 \end{gathered}$	Total	$\underset{\substack{\text { l'rinci- } \\ \text { ral. }}}{ }$	Interest.	Total.		$\begin{gathered} \text { Princi- } \\ \text { pal- } \end{gathered}$	Interest.	Total. Year
1	1000	50	1050	100	50	1.50	900	100	50	1501
2	900	45	945	100	45	14.5	800	100	45	145 ?
3	800	40	840	100	40	140	700	100	40	140 ?
4	700	35	73.5	100	35	135	600	100	3.5	1354
5	600	80	630	100	30	130	500	100	80	1305
6	500	25	525	100	25	125	400	100	25	125 6
$\%$	400	20	420	100	20	120	300	100	20	120
8	300	15	315	100	15	115	200	100	15	115 S
9	200	10	$\stackrel{1}{\sim} 10$	100	10	110	100	100	10	110
10	100	5	10.5	100	5	105	-	100	5	10.510
	1000	275	-	1000	295	1275	-	1000	351	1275

CHAPTER XII.

THE REPAYMENT OF THE LOAN DEBT OF LOCAL AUTHORITIES AND COMMERCIAL AND FINANCIAL UNDERTAKINGS (Continued).

The Annuity Method,

BY AN EQUAL ANNUAL INSTALMENT OF PRINCIPAL AND INTEREST COMBINED, TO BE REPAID TO THE LENDER.

Methods of calculating the annual instalment by formula AND TABLES: AND THE GENERAL RULES BASED THEREON. NO SINKING FUND REQUIRED, BUT AN EQUAL PERIODICAL REPAYMENT TO TIIE LENDER OF PRINCIPAL AND INTEREST COMBINED. The reidtion between such equal anNual instalament, THE SINKING FUND INSTALMENT (CHAPTER XIII) AND TIE EQUAL ANNUAL INSTALMENF OF PRINCIPALONLY (CIIAPTERXI). STATEMENT SHOWING TIEE FINAL REPAYMENT OF THE LOAN.

Author’s Standard Caleulation Form, No. 5.

Formulæ.

The whole of the formule at the heal of Chapter TIII, relating to Table I' (the ammity which $£ 1$ will purchase) apply to the present method.

General Rules deduced from the formulæ relating to Table V : -
To find the ciqul anmual instalment of primeipul and interest combined, to repay a given loan during a stated period.

Author's Standard Calculation Form, No. 5.
Rule 1. If the rute per cent. be not given in Table T , or in Thoman's Tables:-

Proced b!y the formula relatim! to Table I. Calculation (NIL) 4 A .
Rule 2. If the rate per cent. be giren in Table T : Multipl!y the ammuity giten in the table by the "moment of the loan. The product is the required anmual instalment.

C'alculation (XlI) 4B.

Rule 3. If the rate per cent. be given in Thoman's Table:To the log. of the amount of the lom add the log. of a^{n}, as given by Thoman: deduct 10 from the sum of the logs. The remainder is the log. of the required ammual instalment. ('alculation (NII) $\pm C$.

Rule t. Find the sinking fumd instalment by any of the rules given in the following chapter; add to the instalment so found one year's interest upon the loan. The rate per cent. in both cases to be the rate of interest to be paid to the lender. The sum is the requircd annual instalment. ('alculation (XII) 5.
To find the rate per cent. or number of years, proceed as shoun in the standard form for the purpose, relating to Table T , given in Chapter X .

Tife Anvuity Metiod. Under this method there is, as in the case of the instalment method, an actual repayment each year to the lender, the whole of which is charged to the rate or revenue account of each year. But in this case the lender receives an equal amount each year, composed of principal and interest combined. To the extent that it involves an equal annual charge upon the rate or revenue account of the municipality during the whole of the reparment period, it is an improvement upou the instalment method, but it still has not any advantage to the lender. As will be seen by the detailed statement, XII. A., following, and also by the comparative statement in Chapter XIII, after the sinking fund method, the annual amount repaid to the lender consists of an increasing amount of principal and a decreasing amount of interest: and, further, if the lender be a trustee, or requires for any purpose to allocate the repayment as between capital and income, he must make a somewhat difficult calculation. The lender has to reinvest each year a gradually increasing amount of principal, unless he sets aside an equal ammal proportion of the amount paid to him, as a sinking fund, as will be explained later.

The formulee and tables will now be applied to ascertain the equal annual instalment of principal and interest combined required to repay a loan of $£ 1,000$ in 10 years at 5 per cent. There are sereral wars of doing this, but the clearest, although not the shortest, will he first described, being the one which best illustrates the principles involved. Learing the actual ralculation for the moment, the transaction will be divided into
two parts, ignoring for the present the anmual repayments to the lender. The loan of $£ 1,000$, if not repaid, will accumulate at 5 per cent. compound interest with yearly breaks, and at the end of the period will amount to $£ 16899$, as shown by Calculation (XII) 1. The next step is to ascertain the amount, at the end of 10 years at 5 per cent., of an equal annual instalment of $£ 1$ per anuum, or 125599 , as shown by Calculation (XII) 2.

It has now been ascertained that $£ 1,000$ in 10 years at 5 per cent. will amount to $£ 1628 \cdot 9$ and that each $£ 1$ of equal annual instalment, or anmuity, will at the end of 10 years amount to $£ 125559$; and it is therefore obvious that the equal annual instalment required will be, in sterling or other currency, exactly the number of times that 12.5759 is contained in $£ 16259$. By dividing $£ 16289$ by $£ 125779$, the required equal amual instalment of principal and interest combined is obtained, riz., $£ 129 \cdot 51$, as shown by Calculation (XII) 3. The actual details of the above Calculations (XII) 1 and (XII) 2 are given at the end of the chapter upon the author's standard calculation forms, No. 1 and No. 3, both of which are made by three methods:-
A. by formula.
B. by the published tables;
and C. by Thoman's tables.
The two factors referred to have now been ascertained:Calculation (XII) 1 shows that the original loan of $£ 1.000$ will in 10 years, at 5 per rent., amount to $£ 162890$: and Cakulation (XII) $\underset{\sim}{2}$ shows that $£ 1$ per annmm will in 10 rears, at 5 per rent., amount to $£ 125599$ and the required ammal instalment of principal and interest combined is obtained by dividing $£ 168890$ hy $£ 125 i 59$ by logarithms as follows.

CALCTLATION (XII):?.

To find the equal amual instalment of principal and interest combined to repay a given loan.

Required the equal ammal instalment of primeipal and interest combined, to be repaid to the lomder ans and when set aside, to repay $£ 1,000$ in 10 years at 5 per cent.

By Tables I and lll and Logs. Based on C'alentations (NII) I and (III) ?

Table 1, Calculation (XII) 1:
Amount of $£ 1,000$ in 10 years at
5 per cent. 16289 32118930 derluct, log.
Table III, Calculation (XII) 2 :
Amount of $£ 1$ per annum for 10 years at 5 per cent...
$125759 \quad 1.0996079$
2.11228551
which is the \log. of the required equal annual instalment of principal and interest combined, viz., £129.51
The principle involved in the above method of ascertaining the equal annual instahment of principal and interest combined, to be repaid to the lender as shown in Calculation (XII) 3 , is, that, on the one hand, there is the original loan of $£ 1,000$ quietly rolling up all by itself for the prescribed period; and, on the other hand, there is an equal annual instalment of ± 129.51 also rolling up at the same rate per cent. for the same period. The ammal instalment is of such amount that, at the end of the period both accounts will amount to exactly the same sum. Seeing that the rate of accumulation is the same in both cases, it is obvious that the trausfer from one account to the other of an anuual sum in repayment of principal and interest combined, out of the accumulating credit, may be made without in any way affecting the result arrived at by considering the two factors as independent transactions.

The following table shows the methods of finding the equal annual instalment of principal and interest combined in the foregoing example, and also demonstrates the derivation of the formula relating to Table V from the formule relating to Tables I and III :-

N'umerator:- \quad\begin{tabular}{c}
By

Published

Tables.

\quad

Actual

Values.

\quad

By

Fornule.
\end{tabular}

The amount of $£ 1$ in any number of years \ldots... Table I $16: 8.90 \quad R^{N}$

Denominator:-

The amount of $£ 1$ per annum, in the same number of
years
y

In Chapter IX it was pointed out that the above formula $\mathrm{R}^{\mathrm{N}} r$ $R^{\mathrm{N}}-1$ is the equivalent of Thoman's factor $\left(a^{n}\right)$, both of which denote the ammuity which ± 1 will purchase for any number of years. In Chapter VIII the same formula was arrived at, by deduction, from Tahle IT, which gives the present values of an annuity of $£ 1$. The present example proves that the formula for Table 1 may be also found by deduction from Tables I and III, and consequently that the equal anmual instalment of principal and interest combined may be found by Table V^{\prime} or by Thoman's factor (a^{n}) in a much more direct way than by using Tables I and III as above. The calculation will therefore be made by Table V, on the author's standard calculation form No. 5, using the three methods therein contained, namely, by formula, by the published table, and by Thoman's method. See Calculation (XII) 4 at the end of this chapter.

The general rules relating to each mothod are given at the head of this chapter.

The Relation between the Equal Annual Instalment of Principal and Interest Combined, and the Sinking Fund Instalment. On comparing the above Calculation (XII) 3 , relating to the ammity method, with Calculation (XIII) 1 , in the following chapter by which the sinking fund instalnent is ascertained, it will be seen that Calculation (XIII) \mathbf{l} is the simpler because it involves only one reference to the published tables (No. HI.). The present comparison is made in order to compare the ammal instament of principal and interest combined with the sinking fund instalment, ignoming the fact that there is a more direct methor of finding the equal ammal instalment of principal and interest combined ber mons of Table V. It will be seen that the equal anmal instalment of principal and interest is greater than the sinking fund instalment by $£ 50$, which is one rears interest upon the loan of $£ 1,000$ at 5 per cent. per annum.

The equal ammal instahment of primeipal and interest combined, to be paid to the lender under the amuity method may be there fore asertained in the following manner:-

First ascertain ther sinkin!g fund instalment which will proncide the loan at the end of the period, as in ('alculation (N/II) 7, tokiug as the rate of acemmintation of the sinking fund the rats of interest to be paid to the fender under the ammuity methood.

Then udd to the anmual sinking fund instalment so foumd one year's interest upon the loan at the same rate, which is the rate of interest payable to the lender, and the result is the equal annual instalment of principal and interest combined under the anmuity method, as follows:-

CALCULATIUN (XII) 5.

To find the equal annual instalment of prineipal and interest combined to repay a given loan.
Required the equal aunual instalment of priucipal and interest combined, to be repaid to the leuder as and when set aside, to repay $£ 1,000$ in 10 years with interest at 5 per cent.
Based on the Sinking Fund Method. See C'alculation (NIII) 1.
Amount of the annual instalment by the sinking
fund method as found by Calculation (XIII) 1, £ 59.51
$A d d$ one year's interest on $£ 1000$ at 5 per cent. $50 \cdot 00$
$£ 129 \cdot 5 \mathrm{I}$
whieh is the required annual instalment of principal and interest combined, as found by C'alculations (XII) 3 and (XII) 4.

It is important to bear in mind the requirements as to the rate per cent. This method is of practical use only in finding the equal annual instalment of prineipal and interest combined under the annuity method. The sinking fund instalment is more easily found by the direet method shown in Calculation (XIII) 1, than by employing the method shown in Calculation (XII) 3, to find the annual instalment of principal and interest combined, and deducting therefrom the amount of interest upon the loan.

The difference between the two instalments may be stated in terms of the respective formule by dedueting the formula relating to the sinking fund instalment from the formula expressing the equal annual instalment of prineipal and interest as follows:-
(1.) $\left(\frac{\mathrm{R}^{\mathrm{N}} r}{\mathrm{R}^{\mathrm{N}}-1}\right)-\left(\frac{r}{\mathrm{R}^{\mathrm{N}}-1}\right)=\left(\frac{\mathrm{R}^{\mathrm{N}} r-r}{\mathrm{R}^{\mathrm{N}}-1}\right)$
(2.) $\left(\frac{\mathrm{R}^{\mathrm{N}} r-r}{\mathrm{R}^{\mathrm{N}}-1}\right)=\binom{r\left(\mathrm{R}^{\mathrm{N}}-1\right)}{\mathrm{R}^{\mathrm{N}}-1}=r$
which is the iuterest upon £1 for one year. One instalment may also be expressed in terms of the other. If it be required to find the equal ammal instalment of prineipal and interest. hasing found the sinking firmd instalment, divide the formula relating to the equal ammal instalment of principal and interest by the formula relating to the sinking fund instalment as follows:-
$\left(\frac{R^{N} \cdot}{R^{N}-1}\right) \div\left(\frac{r}{R^{N}-1}\right)=\left(\frac{R^{N} r}{R^{2}-1}\right) \times\left(\frac{R^{N}-1}{r}\right)=\left(\frac{R^{2} r}{r}\right)=R^{N}$
thereby proving that the equal amual instalment, of principal and interest combined, may be found by multiplying the ascertained sinking fund instalment by the ralue of R^{N} as given in the published table (No. 1): or by logs., by adding to the log. of the sinking fomd instalment the log. of l^{N}, as given in Thoman's tables. The sum of the above logs. is the log. of the equal annual instament of principal and interest conbined.

Applying this rule to the present example:-
Log. Sinking fund instalment $\ldots \quad \ldots=395046 \quad 1.9003921$
add Log. $\mathrm{R}^{\mathrm{N}}, 10$ years, 5 per cent. $1 \cdot 62589 \quad 0 \div 118930$
Log. equal anmual instalment of principal and interest combined $=2 \cdot 1122551$
which, as shown by Calculation (N 1 f) 4 , is $£ 129 \cdot 51$.
This method will rarely be used in practice, but is interesting as furnishing a further example of the relation between the abore formula.

Time Repayment of the Loan by the Anxtity Memiod. The following statement XII. A. shows the repayment of the loan, year by year; and shoukd be compared with the similar statement XI. A., relating to the instalmemt metherl in the previons chapter. It should also be compared with statement XIII. A., relating to the sinking fund mothod in the next chapter, when it will be noticed that not muly is the total ammal charge to the revenue or rate acoomb miform during the whole of the reparment period under hoth the anmuity and sinking fund methods, but that the total ammal charge is also the same in amoment in cach case provided that the rate of accumulation of the sinking fund is the same as the rate of interest parable mpon the loan. The following Statement XII.A. also shows the increasing amounts of principal and
the comserfuent derreasing amounts of interest contained in the equal amual instahment repaid to the lender.

Ifter considering the sinking fund method in the following chapter the results moder the three methods will be shown in tabular form, both as regards the actual repayment to the lender, and also the ammal charges to the revenue or rate account during the successive years of the repayment period, in Statement XIII. B.

The two methorls already discussed, namely, the instalment method and the annuity method, involve the provision each year, out of rate or revenne of part of the principal and interest, and such ammal prorision is actually repaid to the lender as and when set aside. They do not therefore in any way partake of the nature of a sinking fund, which relates only to the provision for the reparment of the principal in one amount at the end of a definite period, and will be deseribed in the following chapter.
STATEMENT XII, A.
The Annetty Method.
Showing the reparment of a Loan of $\pm 1,000$ in 10 yars, with compound interest at 5 per cont, per annum by

$\begin{aligned} & \text { Year } \\ & \text { end } \end{aligned}$	(Hwing at begiming of year	Interest at 5%	Total owing	Reparament			Balance owing at rad of year	Cuabas to Revenue			$\begin{aligned} & \text { Year } \\ & \text { end } \end{aligned}$
				Principal	Interest	Total		Principal	Interest	Total	
1	1000.	50.	1050	79.51	50	129.51	$920 \cdot 49$	79.51	50.	199.51	1
2	$9: 0 \cdot 49$	16.0こ	966.51	$8: 3 \cdot 4!$	$46 \cdot 0$	129.51	83%	$8: 3 \cdot 49$	$46 \cdot 0 \cdot 2$	199.51	2
3	833°	41.85	S28.85	ST'lif	$41 \cdot 85$	129.51	749:94	$87 \cdot 66$	41×5	199.51	;
4	-49\%4	37.46	T86.80	$9 \because 0.5$	37.46	129.51	$657 \cdot 29$	9\%-0.7	$: 3 \cdot 46$	129.51	4
5	$657 \cdot 29$	$3 \div 86$	$690 \cdot 15$	96.6 .5	$32 \cdot 66$	129.51	$560 \cdot 64$	9606	$\because \cdot 3 \cdot 86$	129.51	5
6	$560 \cdot 64$	$280: 3$	$5 \mathrm{SC} \cdot 6$	101.45	$28 \cdot 0: 3$	$1: 951$	$459 \cdot 16$	$101 \cdot 48$	28.00	129.51	6
-	$4.9) 16$	$22 \cdot 95$	$4 \times 2 \cdot 11$	106:36	22.95	129.51	$\because 5 \sim 61$	106.56	92.95	12951	7
8	359.61	$17 \cdot 6 ; 3$	$\because 7004$	11188	$17 \cdot 6: 3$	12951	240.73	111:88	$17 \cdot 6: 3$	129.51	8
9	$240 \cdot 7$	12.0:;	259.6	117.48	12.0:;	129.51	12:95	117.48	12•0:	129\%1	9
10	$12: \cdots 5$	$6 \cdot 95$	$129 \cdot 52$	$123 \% 4$	$6 \cdot 9$	129.51	nil	$12: 94$	$6 \cdots$	129.51	10
	$1000{ }^{\circ}$	$295 \cdot 10$	-	$1000{ }^{\circ}$	$295 \cdot 10$	$129.5 \cdot 10$	-	10000°	$295 \cdot 10$	$1295 \cdot 10$	

Calculation (XII) 1.

Standard C'alculation Form, Vo. 1.
To find the future amount of a present sum.
To find the amount which will be owing at the end of a stated period in respect of a given loan if it be allowed to arcumulate at compornd interest.

Table I.
Required the amount of $£ 1,000$ at the end of 10 years at 5 per ceut. per annum, compound interest.

Required future amount, $£ 16 \geq 890$.
(B) By Table I. $\quad A=1^{\prime} R^{N} \quad$ Rule 2 , Chapter I

Table I. 10 years, 5 per cent.
Amount of $\mathfrak{t} 1$ add Log. Present Sum

R^{N}	$1 \cdot 628895$	0.2118930
P	1000	3
A		3.2118930

Required future amount, $£ 162 S 90$.
(C) By Thoman's Table. $\quad A=P R^{N} \quad$ Rule 3, Chapter IV. 5 per cent. 10 years.

Log. Present Sum $a d d$ Log. R^{N}	P R^{N}	1000	3
		$0 \cdot 2118930$	
	A	3.2118930	

Required future amount, $£ 1628.90$.

Calculation (XII) 2.

S'tanlard C'alculution Form, . Vo. 3.
To find the anomut of an annity in any number of years.
Table III.
Required the amount of $£ 1$ per ammon for 10 years at 5 per cent. per annum, compound interest.
(A) By Formula. $\quad \mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right) \quad$ Rule 1, Chapter VI.

Required amount, £12:5759.
(B) By 'lable III. $\quad \mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{i}\right) \quad$ Rule 2 , Chapter VI.

Table III. 10 years, 5 per cent. $R^{N}-1 \quad 125$ an9
Amount of ex per:mmum $\quad r$ Add Log. Annuity Ay

II
Required amome, \&1d 5 万i9. This amont is given in Table III.
(C) By Thoman's Table. $\quad M=\Lambda y\binom{\mathrm{R}^{N}}{1^{n}}$ Rule 3, Chapter V1. 5 per cent. 10 years.

$\begin{aligned} & \text { Lag. Smmuity } \\ & \text { cild :ogog. Wín in } \\ & \text { Table }+10 \end{aligned}$	Ay R^{N}	1.	0 $10 \cong 118930$
deduct Log. a^{n}	$\mathrm{A} y \mathrm{R}^{\mathrm{N}}$		$\begin{array}{r} 10 \rightleftharpoons 118930 \\ 9 \cdot 1122851 \end{array}$
	M		1.0996079

Required amount, £12.5779.

Calculation (XII) 4.

Standerd Calculation Form, No. 5.
To find the annuity which a present sum will purchase for ant number of years.
To find the equal ammal instalment of principal and interest combined to repay a given loan. The Amuity Method.

Table V.
Reyuired the equal anmual instalment of principal and interest combined to le repaid the lender as and when set aside, to repay $£ 1,000$ with intorest in 10 years at 5 per cent.

By Formula. $\quad A_{y}=\mathrm{P}\left(\begin{array}{c}\mathrm{R}^{\text {N }} \text {, } 1\end{array}\right)$		Rimle 1, Chapter VIII.	
Log. Ratio	$1 ?$	10.5	0.021189:3
Multiply Log. R by	N	10	10
Convert Lug. to ordinare number deduet unity	$1{ }^{N}$	$(1 \cdot 05)^{10}$	0?118930
	$\begin{aligned} & \mathrm{H}^{\mathrm{N}} \\ & -1 \end{aligned}$	$\begin{aligned} & 1.62889 \\ & 1 . \end{aligned}$	
Log. Present Sim add Log. R^{N} above Log. r.	$R^{\mathrm{N}}-1$	062889	1. 7985859
	P	1000	
	R^{N}		$0 \stackrel{2118930}{ }$
	r	$0 \cdot 05$	2.6989700
deduct Log. ($\mathrm{R}^{\mathrm{N}}-1$) above			19108630
	$\mathrm{R}^{\mathrm{N}-1}$		1.2985-79
	1 11		$2 \cdot 1102851$

Required ammity, $£ 1295046$.

$\mathrm{A}_{y}=\mathrm{P}\left(\begin{array}{c}\mathrm{R}^{2} \mathrm{R}^{2}-1\end{array}\right)$		Rule 2 , Chapter ' ${ }^{\text {che }}$.	
Table V. 10 vears, jo per cent.	$\mathrm{R}^{\text {N }}$ r	(1) 129.5	1-1109251
Anmuitr $£ 1$ will purchase	R^{N-1}		
add Log. Present Sum	P	1000	3
	14		$2 \cdot 1122551$

Rompured ammity, £129:0046.
 5 per cent. 10 years.

Log. Preseut Sum	P	1000	3
ald Log. a^{n}	u^{n}	$9 \cdot 1199851$	
		$12 \cdot 1129851$	
		$2 \cdot 1129851$	

Required annuity, $£ 129.5046$.

CHAPTER XIII.

The repaydient of tite loan debt of local AUTHORITIES AND CODDERCLAL AND FINANCLAL CNDERTAKINGS (Continued).

The Sinking Fund Method.

by setting aside axd accemtlating an eqlal annual instameat in order to provide the princifal only at the exd of the redemption period.

I, The Accumulating Sinking Fund.

Methods of calculating the axyeal instalment by formela AND tables AND the gexerill reles based therfor. Description of the method and the calcellathon of the anyeal instalamest. Statement showisg the ficil hephamext of the loax. Comparison of the mstamext, anstity and sinkivg foxd methods, illésthated by a statement showivg in each case the annual charge to reyente or rate.

Aethor's Stixdard Ciletlation Form, No. 3x.

2. The Non-accumulating Sinking Fund.

The obiect of the fexd had tos pelation to the metifods brascribed in Sec. $2: 9+$ of the Public Menltil Act, 1875. Statement showing the finil hephymext of the hons and the ancta charges to revexte or rate.

Note.-l'vesis it is otherwise expressly spated, the them

Formulæ.

Varistion of Table III. The ammity mhich will amount to 1 C1 in an! mumber of years, or Table 111.
A. To find the annuity which will amount to $£ 1$ in any number of years:-
(1) Formula,
$\mathrm{A} y=\left(\frac{r}{\mathrm{R}^{\mathrm{N}}-1}\right)$
by logs.: Log. (required ammity)=Log. $\quad r-$ Log. ($\mathrm{R}^{\mathrm{N}}-1$)
(2) By Thoman's Method:-

Formula, $\quad \Lambda y=\frac{\alpha^{n}}{\mathrm{R}^{\mathrm{N}}}$
by logs.: Log. (required annuity $)=$ Log. $a^{n}-$
$\left(\log . \mathrm{R}^{\mathrm{N}}+10\right)$
B. To find the amual sinkiu!g fund instalment which will amount to any given loan, in any number of years: 一
(1) Formula,

$$
\Lambda y=M\left(\frac{r}{\mathrm{R}^{N}-1}\right)
$$

by logs.: Log. (required instalment) $=$ Log. of Loan + Log. r-Loy. $\left(\mathrm{R}^{\mathrm{N}}-1\right)$
(2) By Thoman's Method:-

$$
\begin{aligned}
& \text { Formula, } \quad \mathrm{A}_{y}=\mathrm{M}\left(\frac{\mathrm{c}^{n}}{\mathrm{R}^{\mathrm{N}}}\right) \\
& \text { by logs.: Log. (required instulment })=\text { Log. of } \\
& \text { Loun + Loy. } 1^{n}-\left(\text { Loy. } . \mathrm{R}^{\mathrm{N}}+10\right)
\end{aligned}
$$

General Rules deduced from the above formulæ.

To find the ammul instalment to be set asile and accumuluted as a sinking fund to repay a given loan at the end of a prescribed mumber of years. Luthor's Standard Calvulation Form, No. 3.e.

Rule 1. If the rate per cent. be not given in Table 111, or in Thoman's Tables:

Proceed by the formula dreived from Table IIT, as shown above. Calculation (XIII) 1 A .

Rule 2. If the rate per cent. be given in Table 111 :-
Divide the amount of the loan by the amount given in the table. The quotient is the required anmual instalment. Calculation (NTII) 1 B.

Rule .3. If the rate per cent. be giren in Thoman's Table : To the log. of the loan, add the log. of on n as given by Thoman. Deduet therefrom the lotj. "f R^{N} as given by Thoman: also deduct 10. The remainder is the \log. of the required instalment.

Calculation (NIII) 1C.
To find the rate per cent. or number of years, proceed as shown in the standard form for the murpose, given in Chapter X .

Tife Accumblativg Sinfixg Fund. The sinking fund method provides for the setting aside earh year, and accumulating by way of compound interest, such a sum as will be sufficient to pay off the money borrowed within the prescribed period. It will be gathered from the ahore provision (which is laid down in the Public Health Act, 1875, and is contained in principle in all subsequent Acts) that this method differs from the instalment and annuity methods in two particulars, viz. :-

1. It provides for the reparment of principal only, and is quite apart from any question of interest on the loan.
2 . The reparment of the principal moner is not made by instalments, but takes place at the end of the prescribed period, with rertain reservations which will be dealt with later.
In both the instalment and annuity methods there is not any question of the rate of acrumulation, as the annual reparments are made direet to the lender, and there is not therefore any sinking fund set aside.

In the case of the annuity method as applied to the reparment of the doht of a local authority, the lender mar, or may not, he able to reinvest the increasing proportion of principal included in the annual instalment paid to him, at the calculated rate which he receives upon his investment, but this does not enter into the calculation in any way. So far as the local authority is ronerned they undertake to pay to the lender interest at the agreed rate for such period only during which they have the use of the moner. As regards sinking funds relating to the loan del) of commerejal and financial molertakings. this is also gencrally the case. but the prochaser of an ammity may require that the annual instalment shall be fixed at such an amomet as will rield him a specified rate of interest upon his principal, and at the same time enable him to reinest the ammal reparments of prineipal at a lower rate than he receives as interest, in order to replace the capital.

With regard to the provision in the Public Health Act that the anmual sum set apart shall be sufficient, after payiney all expenses, to par off the money bormwer within the period sanctioned, it is found in practice that the expenses, being of uncertain amount, camot be calculated artuarially. They are therefore omitted from the calculation, and if small in amomet are charged direct to the rate or rerenue account as and when incurred. Where the expenses of raising the loan are large in amount, as is the case when the loan is authorised by special Act of Parliament, the Act generally provides that the cost of obtaining the powers shall be repaid by means of a separate sinking fund to mature in a short period, generally 5 to 10 years.

The sinking fund method is the one now generally adopted by all local authorities for the anmal provision for redemption of debt. It is called a sinking fund when it relates to loans, a loans fund when it relates to the amual provision of principal and the payment of divideuds on stock, and a redemption fund when it relates to stock issued under the stock regulations of the Local Govermment Board. This is all very misleading and confusing, but these are the statutory terms. The general term sinking fund, with some distinguishing word added, would better describe the nature of the fund which fulfils the same purpose both in the case of loans and stock. The sinking fund relates only to the ultimate repayment of principal by means of an equal annual sum charged against the year's revenue or rate, such anmal sum being set aside aud accumulated by investment in outside securities. With regard to the interest payable upon the loan, it is obvious, since no provision is made for it in the sinking fund instalment, that during the whole of the period of repayment the rate or revemue account of each year will be charged with interest upon the full amount of the original loan, and this notwithstanding the fact that part of the sinking fund may have been applied in the redemption of part of the loan before the expiration of the repayment period.

Since the interest paid upon the loan is quite outside the question of the sinking fund, the rate of accumulation of the fund may, and generally does, differ from the rate of interest payable to the lender. Section $294(5)$ of the Public Mealth Act, 1855 , provides that the local anthority may apply the whole or any part of the sinking fumd in the repayment of the debt, but if they do so they must par into the sinking fund aunually a sum equivalent to the interest which would have been produced by that part of the sinking fund so applied. This provision, which is generally inserted in all general and
special Acts, is absolutely necessary. The sinking fund is calculated to accumulate at a definite rate per cent., and if any part of the fund be used to repay part of the delot the fund will be deficient to that amount, and will lose the interest upon the portion of the fund so applied. This provision is equal to saying that any such application of the sinking fund shall be treated as an investment of the fund as if it had been actually invested in outside securities.

The section provides that the local authority shall pay into the sinking fund a sum equivalent to the interest which would have been produced by that part of the fund applied towards the redemption of debt. But in practice it is usual to estimate that the sinking fund will aceumulate at a lower rate per cent. than the interest paid upon the loan. This is in order to provide for a fall in the rate of interest obtainable upon firstclass investments, and it results in a larger annual instalment being set aside than would be the case if the sinking fund were calculated to accumulate at the higher rate of interest paid upon the loan. The general practice, when loans are redeemed out of the simking fund, is to pay into the fund the actual amount of interest previously paid to the loan holders. Any surplus thus arising helps to make up the deficieney caused by the low rate of interest obtained when part of the sinking find is in the bank awaiting investment, as often happens.

With regard to the investment of the sinking fund until it is applied in the redemption of debt, it was until recently the practice of Parliament and also of the Local Government Board to require that it should be invested in outside securities, but of late years Parliament has siven power under special Acts to invest the sinking funds in the stocks and loans of the same local authority. The sinking fumd, however, cannot be invested in any other department of the same authority mbess that department has obtained statutory powers to horrow the amount, and is therefore moder a statutory obligation to set aside out of rerente or rate a sinking fund for its redemption.

In the case of local authorities issuing stock at par which afterwards commands a prominm, the whole of the cost of any part of the stock which is redeemed at a premium eanmot be taken out of the sinking fund, hut only the par value of the stock, the premium being charged to the rate or reveme account at the time the stock is redecmed. If such purchases at a premium are rariable, boih as to time and amomet. they may be dealt with ly means of a supplementary sinking fund relating to the premium only, in such a manner that the premium is
spread equally orer the mexpired period. If the premium is fixed at the date of issue of the stock it should be included in the original sinking fund calculation, but if the stock at any time commands a premium beyond this amount the method of providing for it in adrance will be more difficult.

The Calculation of the Axnead Instalment. The actual calculation will now be considered. The instalment is required to be set aside amnually and accumulated at compound interest in order to provide the principal sum only, and the question of interest upon the loan does not enter into the calculation. Under these conditions it would appear that the calculation is much simpler than in the amuity method, using Tables I and III, although not so if Table V be used. The question to be solved, therefore, is, taking as before a loan of $£ 1,000$ repayable at the end of 10 years at 5 per cent., "what amuity accumulated at 5 per cent. for 10 years will at the end of that period amount to $£ 1,000$ '? This rate per cent. is the rate of accumulation of the sinking fund and not the rate of interest payable upon the loan. All questions involving the calculation of the amount of an annuity are treated by the formula relating to Table III, already referred to, namely,

$$
\mathrm{I}=\mathrm{Ay}\left(\frac{\mathrm{R}^{\mathrm{N}}-1}{r}\right)
$$

the actual ralues for $£ 1$ per anmum being given in Table III.
The sinking fund calculation may be compared with that made in the case of the annuity method, Calculation (XII) 3, in which the instalment was recquired to provide a sum equal to the "amount" of $£ 1,000$ accmmulated at 5 per cent. compound interest.

In this case the instalment has to provide only the capital sum of $£ 1,000$ without interest. Consequently if the actual loan be taken instead of the "amount" of the same sum at the end of the period, as in Calculation (XII) :', the required annual instalment will be obtained for the reasons given in discussing Calculation (XII) 1. The rule, therefore, to find the sinking fund instalment is:--
"Divide the amount of the loan by the amount if $£ 1$ per annum as given in Table 111 for the required number of years at the stated rate per cent. and the quotient is the required ammal instalment."

The problem resolves itwelf into the following:-
If $£ 1$ per ammm in 10 years at 5 per cent. will, at the end of that period, amount to ± 125599, what annuity will, under the same conditions, amount to $£ 1.000$:

The required formula is obtained by transposing the formula relating to Table III as follows:-

$$
A y=\left(\frac{\mathrm{R}}{\mathrm{R}^{\top}-1}\right) \text { or } A y=M\left(\mathrm{R}^{r}-1\right)
$$

and the calculation will be made upon the author's standard form, No. Sx, by the three methods previously referred to.

It may be interesting to point out that this calculation is an example of how the use of a formula may lead to the discovery of another method of making the same calculation. It will be noticed in the above case that the numerator in the formula is I $\times r$. (which means that $£ 1,000$ has been multiplied by 0.05) and the result divided by $\left(\mathrm{R}^{2}-1\right)$. But $£ 1.000 \times 0.05=£ 50$, which is the interest upon $£ 1,000$ for one rear at 5 per cent., and therefore that an alternative rule may be stated as follows:
"To ascertain the sinkin! fund instalment, find the interest upon the amount of the lom for one year at the sinking fund rate of accumulation (not the rate of interest payable "pon the loan) and diride b! $\left(\mathrm{R}^{\mathrm{N}}-1\right)$, which is the actual value given in Table I, redured by unity."
This rule is not of aus practical adrantage orer those given at the head of this chapter, and will not therefore be further considered.

Thif Fichl Rephymett of the Delit ify the Gperition of the sinking Fuxd. The following statement shows the final reparment of the loan by the operation of the sinking fund and also the amual parment of interest upon the whole of the loan until the end of the prescribed periorl when the accumulation of the fund is equal to the amount of the loan which is then repaid, the fund exhausted, and the annual contributions cease.

This statement shows that the fumd is increased anmally by the instalment provided out of revenue or rate and by the iurome received upon the investment of previous instalments. This income from investments is the amount which the lender, muder the annity method. would have obtained if he had taken out of each anural instalment of $£ 12951$ paid to him the sum of ± 50 by way of interest upon his loan, and inrested the
remaining $\mathfrak{E}^{2} 951$ and the subsequent accumulations at 5 per cent. ammally to provide his rapital at the end of the term. He would by this means obtain a more regular income than by treating as income the interest shown in the tables relating to the annuity method, which decreases year by year. It will further be noticed that the interest charged to the revenue or rate account mider the amuity method, as shown in the table relating to that method, added to the income received from investments, as shown in the table relating to the sinking fund method, are together equal in each year to $£ 50$, which is the interest paid to the lender ammally under the sinking fund method. See Statement XIIl. A., page 139.

If, therefore, the lender, under the amnity method, requires to equalise his ammal income, he may do so by setting aside an equal annual sum out of the instalment and accumulating it as a sinking fund to provide his capital.

This mode of equalising the income might be adopted by trustees and executors with the object of securing a fixed income for a tenant for life, but will apply only to an annuity for a fixed term. The above argument is, however, subject to the rescration that the lender may not be able, year by year, to reinvest the periodical reparments of principal to rield the rate per cent. upon which the annual instalment was based.

Comparison of tue Timee Metiods. It is now possible to compare the repayment of loans hy instalment, ammity and sinking fund methods, as above described, and this will be done from the standpoints both of the lender and borrower by means of the following statement (XIII. B., page 140.

In Chapter XI, the instalment method has been compared with the annuity method, and it is interesting to compare the annuity method with the sinking fund method. In each case the annual instalment is ascertained by dividing a definite sum by the same accumulated amount of an amuity of $£ 1$ for 10 years at 5 per cent., but in the case of the amuity method the amount so divided is the amount of the principal sum accumulated at compound interest, whilst in the sinking fund method the amount so divided is the principal sum itself without accumulations. This is owing to the fact that the amual instalment in the case of the annuity method includes interest, whereas the annual instament in the case of the sinking fund relates to the principal sum only. The annual instalment in the sinking fund method, therefore, is smaller than in the case of the annuity method.

By the annuity method, Calculation (NII) 3, the instalment of principal and interest is... $£ 129.51$
By the sinking fund mothod the instalment of
principal only is
p.
The difference being one year's interest on $£ 1000$ at 5 per cent. ...
$£ 50 \cdot 00$
Cnder the sinking fund method, therefore, the total anmual charge to revenue or rate in respect of principal and interest is exartly equal year hy year to the total amual charge under the annuity methorl, viz. $£ 19951$ in each case.

This has already been referred to in discussing the annuity method in Chapter XII.

With regard to the instalment method the total annual charge to revenue or rate account in respect of principal and interest is greater in the earlier years and is gradually reduced from $£ 150$ to $£ 105$ in ten years. The relative merits of the annuity method and the sinking fund method as regards the annual incidence of local taxation are equal and are more equitable than the instalment method. As regards the investor, under the instalment method he receives a decreasing ammal payment made up of a constant amomet of principal and a decreasing amount of interest; but he has definite kinowledge of how much is interest and how much is prineipal. Thder the annuity method he receives an equal annual payment made up of an increasing amount of principal and a decreasing amount of interest; but without an elaborate calculation he is mable to apportion the amount paid to him between capital and income. Cnder both the instalment and the anmuity methods the investor receives ammal sums in respect of his tapital which he has to reinvest in small amounts.

Comparing the sinking find methorl, on the one hand, with the instalment and amnity methods on the other, from the point of view of the investor, it will be seen that under the sinking fund method he receives each frar an equal amount by way of interest upon his momer, and has the further advantage of a permanent investment of the whole of his capital for a definite long term. If he wishes to realise he has a definite security to place upon the market either to be bought by some other investor wr to be redermed bey the local authority out of the sinking fund. Inder the sinking fund method he has to run the risk of a fall in the market value in the case of a loan
raised he the issue of stock; but, on the other hand, he may realise a profit. Summing up the respective merits of the various methods of repayment of the debt of local authorities, it may fairly be concluded that the accumulating sinking fund method is by far the best. It bears equally upon the taxation or revenue of each year of the repayment period: and as regards the investor, it is at once more convenient and more equitable than either of the other two methods.

Tief Mox-Accumblativg sinkivg Fuyd. Up to this point the enquiry has been limited to accumulating sinking funds similar to the one prescribed in the Public Mealth Act, 185. The principal feature of such a fund is the provision out of revenue or rate of an equal ammal instalment to be set aside and accumulated for a prescribed period at a rate per cent. to be fixed in anticipation, with as near approach to accuracy as can be obtained. In the case of loans with long repayment periods this is rery difficult, and it therefore becomes necessary to compare the actual amount in the fund periodically with the calculated amount which should be in the fund as shown by the pro forma account. Any surplus or deficiency in an accumulating fund should be credited to, or charged against, the revenue or rate account of each rear, but this entails considerable labour, and it is one of the objects of the non-accumulating sinking fund to aroid this by providing an antomatic accurate accumulation of the fund irrespective of the rate of income received on the investments representing the fund. The hasis of the method is the instahment system discussed in Chapter XI, where each year a definite sum is charged to the revenue or rate account and repaid to the lender. The anmual instalment in the rase of the non-accumulating sinking fund is calculated precisely as in the instalment method, namely, by dividing the amount of the loan by the number of rears in the repayment period. But in this case the ammal instalment of principal is not repaid to the leuder, but is invested by the local authority in order to provide the amount of the loan at the end of the period. Since an equal amount is added to the fund year by year it requires merely an arithmetical calculation to ascertain the amount which should be in the fund at any time. Seeing that the total amount of the loan is provided by the actual equal ammal charges to revemue or rate, it is obrions that the income arising from the investments representing the fund need not be added to the fund. Ori comparing the artual instalments only.
under the instalment method in Chapter MI, with those under the accumulating sinking fund method in this chapter, it will be seen that the charge to revenue or rate under the instalment method is greater than under the accumulating sinking fund methorl, consequently in the case of a non-accumulating fund the income to arise from the investments may be credited to the rate or reveme account to which the ammal instalment of principal has been debited. The excess of the original anmmal instalment in the non-accmulating fund orer the instalment in the accumulating fund will not be compensated be the reduction therein lue to the income received from the inrestment of the fund, because such resulting income will be small during the parlier years; and an equality in the amual burden will not be reached until the cind of the fifth year out of ten. The first four years will therefore bear an additional burden, and the last five years will be relieved, as compared with the anmal incidence under the acrumblating fund, in a similar mamer to the instalment method. As regards the ratepayer, the non-accomulating fund will have all the disarlvantages of the instalmant method already pointed out. The lender, on the contrary, will be in a better positiom, since le obtains a permanent investment and is relieved of the periodical reinvestment of small amounts of capital. The actual method by which the local authority provides the sinking fund has not any particular interest to him.

As between the instalment and ammity methods, on the one hand, and the two sinking fund methods on the other, the only difference is the rate at which he shall he repaid, aml he invests in the particular loan which best meets his requirements. Under the two periodical repayment methods the lender may be said to keep his own sinking fund, whereas in both sinking fund methork the local antlority does this for him. There are not any mathematical principles involved in the non-accumulating fund, but it is merely an arithmetical one. The following table shows the final reparment of the loan ly the operation of the fund. In order that it may be compared with the acemmulating sinking fund it has been assmmed that the investmonts yiold 5) per ernt. per ammun, and that no part of the fund is applied in redemption of dednt during the period: -

STATEMENT IIII.C.

The Repayment of the Debit of Logil Authorities.
The Mon-Accumlativg Snhivg Fuxd.
Showing the repayment of a loan of $\pm 1,000$, at the end of 10 years by an equal amual instalment of principal, to be set aside and invested as a sinking fund, the ammal income upon the investments being applied in reduction of subsequent instalments. Interest at $\overline{5}$ per cent.

$\begin{aligned} & \text { Year } \\ & \text { end } \end{aligned}$	Ammal Instal. ment	Deduct Incone received	$\begin{aligned} & \text { Net } \\ & \text { charge to } \\ & \text { revemue } \\ & \text { or rate } \end{aligned}$	hiterest on loan	$\begin{gathered} \text { Total } \\ \text { charge to } \\ \text { revemue } \\ \text { or rate } \end{gathered}$	$\begin{gathered} \text { Amount } \\ \text { in1 } \\ \text { finnd } \end{gathered}$	$\begin{aligned} & \text { Year } \\ & \text { end } \end{aligned}$
1	100	-	100	. 50	150	100	1
2	100	5	9.5	50	145	200	2
3	100	10	90	50	140	300	3
4	100	15	85	50	$1: 35$	400	4
5	100	$\because 0$	S0	. 90	1:30	500	5
6	100	2.5	i.5	50	125	600	6
7	100	30	TO	50	120	500	\%
8	100	35	65	50	115	800	8
9	100	40	60	50	110	900	9
10	100	45	5.)	50	10.5	1000	10

The clauses authorising the non-accumulating sinking fund contain the usual permission to apply part of the fund in redemption of debt; but in this case there is not any necessity to have regard to the interest which would have been received in respect of the part of the fund so applied, because, although the income received from the investments will be smaller in consequence of such application, yet the interest payable upou the loan will be correspondingly reduced, and there will not therefore be any alteration in the combined charge for interest and redemption. There is another matter which may properly be considered to the adrantage of the non-accumulating fund, if the greater burden imposed during the carlier years is not fatal to its adoption. This affects the possible and rery probable variation in the rate of income to be received from the investments representing the fund. In the case of the accumulating fund, as already pointed out, it very rarely happens that the
fund increases in accordance with the calculated amount, thus rendering it necessary to make frequent adjustments through the revenue or rate accomnt. As will be shown in later chapters, the variation in the rate per cent., whether of income from investments or of accumulation, gives rise to many of the problems which have to be dealt with. The non-accumulating fund has this adrantage, that any variation in the rate per cent. is at once antomatically adjusted, seeing that if from any cause there is a fall in the rate of income from inrestments there is a corresponding increase in the charge to revenue or rate due to the decreased relief to subsequent annual instalments afforded by the amount of income received from the investments.

In the case of a non-accumulating fund the ammal instalment of the full amount would be credited each year to the sinking fund account and not debited direct to the revenue or rate account, but to an intermediate account which might be called the "non-accumulating sinking fund suspense account." This suspense account would be credited with the income received from the investments representing the fund, and with interest allowed by the bank, if any, whether any part of the fund had been applied in redemption of debt or not, and it would be debited with the interest actually paid or accrued on the outstanding loan. The balance remaining to the debit of this suspense account would then be charged to the revenue or rate arcount and would represent the total charge against the year in respect of loan indebtedness. The accoments of an accumulating sinking fund might be kept in a similar manner. A "sinking fund interest suspense accomut" would be opened, and the sinking fund account would be credited and the suspense interest account debited with the actual amount of interest which should yearly accrue to the fund as shown by the pro forma account. The suspense interest account would be eredited with the actual income received from the investments, and bank interest, and the balance. eithor debit or eredit, but gemerally debit, would be closed hy transfer to the revenue or rate account. By this means the sinking fund accounts would alwars stand at their proper calculated amounts, any reduction in income would immediately become apparent and there would be no possibility of the gradual acemulation of man small deficiencies requiring at some future time considerable correction by an increased aninual instalment.
STATEMENT XIII, λ.
'The Repayment of the Debt of Local Authorities. Chawing the Repayment of a doan of $\neq 1,000$ at the end of 10 years by an Amund Instalment to be set aside
范 Total
$79 \cdot 51$
$16 \cdot \cdot 99$
$250 \cdot 65$
$342 \cdot 69$
$439 \cdot 39$
$540 \cdot 80$
$647 \cdot 35$
$759 \cdot 2 \cdot 3$
$876 \cdot 70$
$1000 \cdot 00$ $\begin{array}{r}£ 79.51 \\ 50.00 \\ \hline £ 129.51 \\ \hline\end{array}$
Interest
received
talmen
$\ldots .$.
Sinking Fu
_-_SINKING FUND.

$\begin{gathered} \text { Year } \\ \text { ent } \end{gathered}$	Owingrat berimming of year	Interest at 5%	Total owing	Interest Imill	Jrincipal repaid	Balance owing at end of year
1	1000	50	1050	50	nil	1000
2	1000	50	1050	50	,	1000
:	1000	50	1050	50	, ,	1000
4	1000	50	1050	50	,	1000
5	1000	50	1050	50	',	1000
6	1000	50	1050	50	',	1000
7	1000	50	1050	50	',	1000
8	1000	50	1050	50	,	1000
9	1000	50	1050	50	,	1000
10	1000	50	10.50	50	1000	nil
	--	-	-	-	-	-
The total annual charge and the annual inter						

S'IATEMENT XIII, B.
The Repayment of the Debt of Locat Aithorities.

Gifneral، Summary. Ail Methods. Showing the Ammal charge to Revenme or Rate in respect of a Loan of $\mathfrak{E l}$, oof repay										
Nsathment Method.				Annelty Method.			Sinkinc: Fund Metiobs.			
Year.	Principal.	Interent.	Total.	Principal.	Interest.	T'otal.	Primeipal.	Interest.	Total,	Vear.
1	100	50	150	$7 \cdot 951$	50	1295 51	79.51	50	129.51	1
$\stackrel{\prime}{2}$	100	4.$)$	145	$8: 949$	$46 \cdot 02$	12951	$5(5 \cdot 5) 1$	50	12951	\because
:'	100	40	140	STG6	41.85	129.51	- 9.51	50	12951	3
4	100	3.5	1:35	9×0	:3.46	12951	$7!5 \cdot 51$	50	129.51	4
5	100	; ${ }^{(1)}$	130	96.6 .5	: 2 S (12951	7 $5 \cdot 51$	50	12951	5
(i	100	25	125	$101 \cdot 48$	2S•(1:	12951	$7!5.5$	50	12951	6
1	100	20	1:0	1060%	2. 29.9	$1 \div 9551$	7!5 51	50	129.51	7
S	100	1.5	115	111-88	$17 \cdot 6 \cdot 3$	12951	$5(9.51$	50	12951	S
!)	100	10	110	117.48	12.0:)	129.51	79.51	50	12951	9
10	100	5	10.5	$123 \sim 4$	$6 \cdot 97$	1295	79.51	50	129.51	10
	1000	275	$1: 75$	10000	$995 \cdot 10$	$1 \times!5 \cdot 11$	$795 \cdot 10$	500	-	
revenme or rate will be the same year by year as under the imstabment meth local authority is able to invest the efual annual sum set aside, fo vield a rat the rate payable upon the loan.										

Calculation (XIII) 1.

Standard Calculation Form, Mo. 3. x.
To find the annual sinking fund instalment. Table III.
Required the ammal instalment to be set aside and accumulated as a sinking fund at 5 per cent to provide $£ 1,000$ at the cud of 10 years.

Required annual instalment, £〒9.5046.
 5 per cent., 10 years.

Log. Amount of Loan add Log. a^{n}	$\begin{aligned} & \mathrm{MI} \\ & a^{n} \end{aligned}$	1000	$\begin{aligned} & 3 \cdot \\ & 9 \cdot 1122851 \end{aligned}$
deduct Log. R^{N} in Table +10	II a^{n}		$12 \cdot 1122851$
	R^{N}		102118930
	A!		1.9003921

Required annual instalment, $£ 295046$.

Section III.

Sinking Fund Problems.

The Annual Instalment.

CHAPTER XIV．

SINKING FIND PROBLEMS．

RELATING TO：－
（1）The Amoc⿱亠八刀⿴囗十灬丶 in the Fuid．
（2）The Rate per cevt：－
（a）OF INCOME TO BE RECEIVED CPON TIIE PRESENT INVEST－ MEXTS REPRESENTING TIIE FUND：
（b）Tife fetere rate of ACCUMULATION．
（：3）The Redemption Period．
（4）The rate per cent．and tife redemption period in combinition．

Definition of terms ：

1．The phesent intestments．

\because ．The ancull mochement．
The Proforma Accotivt．Having disonssed the several alternative methods of reparment of loan dobe by local authori－ ties laid down by statute，and having desrribed the methods of finding the ammal sums to be set aside for that purpose out of revemme or rate，the subjert will now be considered in its practical aspert．Most of these transactions extend orer rery long periods and all trace of the original calculation is often lost．It is therefore advisable in all rases involving a perionlical provision for repayment by means of a sinking fund to prepare at the outset a proforma account showing how the calculated annual instalment should work out during the whole of the period．

The Local Government Board auditors in many cases require this to be done in respect of all loans coming under their supervision，and it is a practice to be commended and followed． Such a pro forma account enables a comparison to be made annually between the actual and the calculated working out of the fund so that any discrepancy may be immediately set right． Especially does this apply to a deficiency cansed by part of the sinking fund lying uninvested in the bank and earning less than
the calculated rate per cent. of accumulation or due to a general decrease in such rate. Any such deficiency will be of small amount in any one year, and may be charged against the revenue or rate account of the particular year, so keeping the sinking fund up to the proper amount. But cases have arisen in which this has not been done, and from the above, and other causes, the amounts in the sinking funds have been seriously deficient. In such cases it becomes necessary to ascertain the proper amount which would have been in the fund if the original anticipations had been realised. This is a contingency which may arise in the case of a local authority, and there are other questions with regard to sinking funds which, although not affecting local authorities, yet are very important in connection with the sinking funds of commercial and financial modertakings.

Natcre of Problems. In dealing with all cases of adjustment of a sinking fund it will be necessary to refer continually to the present state of the fund as the basis upon which all such adjustments are made, and later, when dealing with other problems, it will be seen that the present position of the fund plays an equally important part. Such questions will be considered later, and will comprise:-
(1) A defieiency in the fund.

Chapters XV, XVI.
(2) A surplus in the fund.

Chapters XVII, XVIII.
(3) A variation in the rate per cent. at which the fund was originally expected to accumulate. Chapter XIX, etc.
(4) A variation in the rate of income to be vielded by the investments representing the fund.

Chapters XY, XIVII.
(5) A variation in the repayment period. Chapter MXIV.
(6) A variation in the repayment period accompanied by a variation in the rate of accumulation. Chapter MXII.

Any or all of the above contingencies may have to be taken into aceome in an adjustment, and as they arise only after the fund has been in operation for part of the origimal repayment period, it is important to ascertain exactly the position of the fund at the time the adjustment is required to be made. It is generally the ease with the sinking funds of local authorities that the amount standing to the credit of the fund is required
to be invested in specific outside securities allocated to the fund, or, which is the same in effect, shall have been applied in part repayment of the original loan. In the case of commercial and financial undertakings it is usual to impose the obligation of such outside investment in order to ensure that the original purpose of the fund shall be carried out, and that the amount in the fund shall be actually arailable for the repayment of the debt at the end of the period. Any enquiry therefore into the adequacy or otherwise of the amount in the fund at any time will properly include, not only the value of the investments representing the fund at the present time, but also an encuiry as to the probable value at the end of the repayment period. It will be neccssary to ascertain whether they are yielding or are likely to continue to yield a return by way of income equal to or differing from the calculated rate per cent. of accumulation. In the following chapters, treating of the above possible causes of rariation, as far as possible for purposes of convenience and comparison, the position of an imaginary sinking fund will be ascertained at the end of the 12 th year of an original period of 25 years, and the position of the fund will be shown at that time, when the enquiry and any subsequent rectification is made, in the following terms, viz. :-
(1) The calue of the present incestments representing the amount in the frund.
(:) The present anmual increment at the time the enquiry is made, and before the rectification to meet the new conditions.

Presert Investments. The term "present investments" will be used to denote the value of the investments representing the amount which actually stands to the credit of the fund and not the amount which should so stand by calculation at the original rate of accumulation as shown by the pro forma account. In fixing the precise market ralue regard should be had to the probability of the individual investments ultimately yielding the original cost price, and if any fall in value has occured, or is likely to occur, it should as far as possible be included in the adjustment. In dealing with a surplus or a deficiency in the fund, any actual change in value should be taken into account in calculating the amended annual instalment; but where the problem concerns the period of repayment or the rate of accumulation, and especially if the fund has a long unexpired period to rum, it is hardly possible to make
any exact forecast of the future value of the investments, or of the future rate of income to be received therefrom, and this should be provided for by making an allowance when deciding upon the amended rate of accumulation, namely, by taking it at a slightly lower rate than would otherwise be sufficient. In the whole of the following examples, except a deficience or a surplus in the fund, it will be assumed that the fund stands at the exact amount shown by the original ealculation: and, further, that the various investments representing the fund are each worth now the exact amount paid for them, and will be so at the end of the period. This will sufficiently explain without further reference the meaning attached to the term " present investments " in the following pages.

The Anstal Increment. With regard to the annual increment, it will be seen, on considering the sinking fund at its inception, that there is then only one factor to deal with, namely, the repayment of a definite loan (or the provision of a definite sum) at the end of a stated number of years. This term will be referred to in the following pages as the " period of repayment or redemption." and in order to make the adjustment it is necessary to fix an arerage rate per cent. at which the future parments to the fund may reasonably be expected to accumnlate by subsequent investment. It is very difficult, if not impossible, to do this correctly in the case of a fund having a long period of reparment, and the practice generally is to assume a rate of accumulation slightly lower than the rate of interest parable to the loanholders. This will allow for a fall in the accumulation rate owing to fluctuations of the money market or for a deficiency in the income of the fund caused by delay in finding an investment which laves money idle in the lank, earning ouly a low rate of interest. If the amual deficiency in the income of the fund on any annual surphes be small it should be rectified, as and when it arises, by adjusting it be means of the revenue or rate account, but if the ammal defierener or sumplus be large, it is better to adjust the ammal instahment immerliately in the mamer to be described later muder the heal of rariation in the rate of acemmulation. Haring fixed the future estimated rate of acemmation, the calculation is made in the mamer shown in Calculation (XIII) 1 , to ascertain the ammal instahment to be set aside each year to aceumulate at the estimated rate. This annual instalment thus becomes the ammal increment during the first year, but after the first instalment has been invested another factor is introduced
into the annual increment, namely, the income from the investments representing the fund.

It is not often that any question affecting the adequacy of the amount in the fund arises during the earlier years of the repayment period. Generally it is much later, and in the following examples it has been taken as the 12 th sear of a period of 25 years. By this time the fund will have amounted to a large proportion of the total sum to be ultimately provided, and the accruing annual income from investments will (with a $3 \frac{1}{2}$ per cent. rate of accumulation) be about one-half of the original annual instalment. Any adjustment of the fund at the end of the 12 th year will therefore depend largely upou the future rate of income to be yielded by the present investments representing the fund. And this adjustment may actually be rendered necessary by a fall in the rate of income rielded by the present investments, occurring at a time when the rate yielded by other investments of all kinds is also falling. If the original rate of accumulation be likely to be maintained in spite of a fall in the income received from the present investments, there is not any need, as shown in Chapter XX (rariation B, in the rate per cent. of income) to make any adjustment by calculation in the annual instalment. All that is required is to take an additional annual sum out of revenue or rate, equal to the amount of the reduction in the future annual income to be received from the present investments, and the fund will continue to accumulate as originally calculated. But where, as in Chapter XXI (variation (in the rate per cent.) it is necessary at the same time to provide for a reduction in the rate of income from the present investments as well as a reduction in the rate of accumulation, the problem becomes more complicated because there are then two different rates per cent. acting upon two different factors. The rate of income upon the present inrestments has no relation to the ammual instalment provided out of revenue or rate which is acted upon by the accumulation rate only. But the actual amount (if not the rate per cent.) of the income from investments is also acted upon by the accumulation rate, and it is possible to state definitely the anuual sum which will be received in respect of such income. Consequently, the difficulty attending the two rates per cent. may be aroided by treating the future income from the present investments as an annuity rertain which will continue $t o$ be received during the whole of the unexpired portion of the reparment period in exactly the same way as the original annual instalment will coutinue to be set aside out of
revenue or rate. These two annual factors together will be considered as constituting the future anmual increment to be included as an asset in the adjustments, and to be supplemented, as will be seen later, by any additional annual instalment (to be provided out of revenue or rate) which may be found necessary to make up for the decrease in the income from the present investments, and also any further deficiency caused by a reduction in the rate of accumulation. This supplemented annual increment will be referred to later as the future or amended annual increment, as defined in Chapter XXII. Although in the examples which will be considered later a reduction in the rate of income from investments will be assumed, it is quite possible that there may be an increase in the rate of income, which would hare the effect of reducing the original annual instalment instead of increasing it. It rarely happens, however, that there is an inerease in the rate of accumulation. It is unwise to predict a change which will have the effect of relieving the present revenue or rate account to the possible detriment of future rears, and if any surplus in the fund arises in this way it is usually dealt with at the time. The above remarks will explain the reason for the methods adopted later of showing the position of the fund at the end the 12 th year when dealing with variations in the rates per cent. of accumulation and income which differ from the methods adopted to show the position at the end of a similar period when dealing with a deficiency or a surplus in the amount in the fund or with variations in the period of reparment without any rariation in the rate per cent. either of income or of accumulation. In both the latter rases (see Statements IV. B. and XXIV. A.), which do not involve any rariation in the rate of aceumulation or in the rate of income, the assets of the fund inclute the accumulated amount (using the term as in Table I) of the value of the present investments at the end of the respertive reparment periods. This amome includes the present value of the investment ($£ 9+6: 3$ and $£ 993 \cdot-5$) and the arcouing compound interest, because they both accumulate at the same rate which is the same as the rate of income upon the investments.

But 1 problems involving a rariation in the rate per cent. of accumulation, without any rariation in the rate of income from investments (as in statement XIX. A.) it is necessary to find the future amount of the present investments by two calculations because whilst the present investments continue to yield $8 \frac{1}{2}$ per cent. per annum, the income so rielded accumu-
lates at only 3 per cent. It is therefore requisite to include the present value of the inrestments, viz., $£ 9932 \cdot 74$ and to add thereto the sum to which the annual income will accumulate at the end of the period at the amended accumulation rate. As above remarked, it is not necessary to consider the annual increment in connection with problems involving a variation in the rate of income from investments only, but later in Chapter XXVI, when dealing with problems involving a variation in the period of repayment complicated by a variation in the accumulation rate, the amual increment again becomes an important factor. The annual increment has been considered in this exhaustive manner because it is a convenient way of expressing the resulting correction required in consequence of any of the above variations.

It is the adjusted annuity under the amended conditions which is the equivalent of the original anmuity under the previous conditions. It may be divided, at both periods, into its component parts of : -
(1) The income from the present investments received from outside sources, and
(2) The annual instalment, to be provided out of revenue or rate, which is the object of enquiry in all cases.
The term will be found very useful when dealing with all actual adjustments, since by dividing the accretions to the fund, as between income from outside investments and contributions from internal revenue, a clearer insight is obtained into the principles underlying the methods adopted.

Methods of Adjustment, based upon the Annual Increment. (1) The Annual Increment (ratio) Method. It will be gathered from the previous remarks that an adjustment in a simking fund due to any variation in the original conditions may be made in terms of the annual increment, and that there is a definite relation always existing between the annual increment before adjustment (the present annual increment) and the annual increment after the necessary adjustment has been made (the future or amended annual increment). These terms are fully defined at the head of Chapter XXII, where the component parts of each amnual increment are exactly described. In both cases the annual instalment may be found by deducting from the annual increment the income from the present investments, thereby climinating from the calculation any variation in the
rate per cent, of income from investments, and confining the enquiry to the rariation in the rate of aceumulation only. The annual increment may le considered as a simple anmuity to be set aside for a number of years (N) and accumulated at a rate per cent. per annum expressed by the factor (R) or ratio, and the combination of these factors, as regards an amuity or other periodic sum is expressed by the formula $\frac{\mathrm{R}^{N}-1}{1}$, the derivation of which, from the simple formula $A=P R^{N}$, is fully described in Chapter VI. There is an exact ratio always existing between a given amuity to be accumulated for a stated number of years at a stated rate per cent., and the equivalent amuity to be accumulated for a varying number of years, at a varying rate per cent., depending upon the respective values of N and R.

This is the basis of the ammal increment (ratio) method, which is fully described in Chapter XXII, and which has been used in many of the examples in the following chapters.
(2) The Anmual Increment (balance of loan) Method. In all problems involving an adjustment in a sinking fund there are two fixed factors to be considered, namely:-
(1) The amount of loan to be ultimately repaid, and
(2) The amount now standing to the credit of the fund represented by the present investments.
And in addition there are two rariable factors, namely : -
(1) The future period of reparment (N years).
$(\mathfrak{2})$ The future rate of accumulation of the fund expressed by the factor (R) or ratio.
Any variation in the future rate of income to be received upon the present investments representing the fund has already been eliminated by merging such annual income in the amnaal inerement.

In all problems involving a variation in the miginal conditions governing a sinking fund the sulgeet of inquiry is the future amended ammal obligation, and this may be ascertained by reducing the present factors to a common basis, namely, the balane of original ban which will be unprovided if the amount now in the fund be immediately applied in redeeming an equivalent part of the loan ultimately repayable. The halance of loan, thereby mprovided for, represents the aeromulated amount of an ammity equal to the future or amended anmal increment to be sot aside for the mexpired or substituted repayment period and accumulated at the original
or varied rate of accumulation. This halance of loan may be ascertained by detucting from the amount of loan ultimately repayable the amount now in the fund as represented by the present investments; and the future annual obligation, which is the future annual increment, may be ascertained by calculating, on standard form, No. : x . the sinking fund instabment required to provide that amount under the altered conditions, both as regards the period of repayment and the rate per cent. of accumulation. The amemled anmal increment so ascertained does not, however, represent the amount to be charged ammally against the revenue or rate account of the local authority. The conditions governing a sinking fund, as laid down in section $2: 34$ (5) of the Public Health Act, 1855, provide that if at any time during the operation of a sinking fund any part of such fund be applied in redemption of debt, the local authority shall, out of its anmual rate, pay into the sinking fund a sum at least equal to the amount of interest which would have acerued to the fund if such amount hard not been so applied. Consequently the future amended anmual instalment is found by deducting from the futur or amended annal increment, ascertained in the above manner, the anmal income to be received upon the present investments which have been considered as having been immediately applied in the redemption of an equivalent part of the loan, whether the rate of income upon such investments remains maltered or is raried.

This is the basis of the annual increment (balance of loan) method, which is fully described in Chapter XXTI, and which has been used in many of the examples in the following chapters.

CLLAPTER IV.

SINKING FCND PROBLEMS RELATING TO
THE AMOUNT IN THE FUND.

A deficiency in the fund; how it may arise and how it may be adjusted.

Preliminary calcelation of a typical sinking fund to be USED TO ILLUSTRATE TIIE PROBLEMS TO BE DISCUSSED in the Following chapters. Methods of ascertainiyg the POSITION OF A SINKING FUND AT ANY TIME. A DEFICIENCY IN TIIE FUND AND THE VARIOUS WAYS IN WHICH IT MAY BE corrected. General summary of methods of adjustment.

Before considering in detail the various problems arising in comnection with a sinking fund it should be stated that there are in each case several methods of making the required adjustment, all of which depend upon the present position of the fund, and the future rariation in the original conditions. The subsequent enquiry will include rariations in all the fundamental factors relating to such a fund, namely, the amount of the fund, the period of reparment of the loan, the rate of accumulation of the fund, and the future rate of income to be received upon the present investments representing the fund. All these factors have each their own effect upon the ultimate function of the fund, namely, the reparment of the loan, but in addition they act and react one upon the other.

For the purpose of comparison, therefore, each of the possible variations will be considered in relation to one and the same fund, and it witl be necessary to treat all the problems on, as far as possible, parallel lines, with the result that in the first instance the most direet method of making the adjustment will not be discussed, although it will be afterwards fully described. The first subjert of enquiry will relate to the simple problem of a deficicncy in the amount in the fund without any further complication, and the adjustment of such a deficiency will be made by the dechuctive mothod, to be followed later when dealing with other matters affecting the fund.

The following is a summary of the general rules as to the adjustment of a deficiency in a sinking fund where the amount in the fund only is in question, and the period of reparment,
the future rate of income upon the present investments, and the future rate of accumulation all remain unaltered. In this chapter a deficiency in the fund has been treated in a very exhaustive manner, perhaps more so than is due to its relative importance. This course has been purposely adopted in order to demonstrate the practical relation between the various formule and the tables deduced therefrom.

Summary of the methods of adjustment.

Tariation I (Dcficiency), in which the adjustment is made by an additional annual instalment to be set aside during the whole of the unexpired portion of the original repayment period.
Method I. The dedective method, based upon all the factors gocerming the fund. Statement IT.B.
(1) Calculate the amount which should stand to the credit of the funt: being the nccumulation, at the calculated rate, of the anmal instalments which should have been set aside. Calculation (IT) 2. £9932: 44.
(*) Ascertuin the value of the present investments representing the fund, incluting in the case of a local authority, the loan repaid by means of the sinking fund. $£ 9463.00$.
(.3) The difference between the above amounts so found will be the afficiency or surplus in the amount of the fund at the time of making the enquiry.
$\mathfrak{E} 469.744$.
(4) C'alculate the amount to which the ralue of the present investments (as in 2) will accumulate at the end of the original repayment period.

Calculation (NT) 4. £14\%99\%1.
(.j) Calculate the amonnt of the remaining original annual sinking fund instalments at the ent of the same period.

Calculation $(\mathrm{IT}) 5 . £ 10960.62$.
(6) Weduct the sum of the tro amounts so obtained (£2.5760.33) from the amount of the original loan.
(7) The difference represents the amount of loan which will be umprocided for in the case of a deficiency, or provided for in extess, in the case of a surplus, at the end of the original repayment period (actually $£ \div 3 \pm 659$). £i 3467 .
(S) Calculate the additional annual sinking fumd imstalment required to provide this sum at the end of the repayment period. ('alculatious (ST^{+}) ? amd ($\mathrm{TV} / 1 . £ \pm 5.59$.
(9) Adjust the original sinking fumel instalment b!! adding to it the annual instalment so obtained in (S) in the case of a deficienry or by deducting it in the case of a surplus.
(10) Prepare a statement showing the final repayment of the loan by the operation of the simking fund umber the amended romditions.

Statement ITI. A.
(11) Prepare a pro forma account shouriuy the amount which should be in the fund at the end of earl year of the unexpired portion of the repayment perind for future reference. Proforma Aecomut, Vo. . 'Thapter IVI.

Method II. In which the original instalment dons not enter into the calculation. Statement ITI.A.
(1) Calculate the amount to which the sum which should be in the fund, as found by ('ulculation (IT) 2, will areumulate at the cud of the repeyment period.

(2) Calculate, and deduct from the sum so foumd. the amount to which the value of the present incestments ($\pm 9, f(\circ)$ will accumulate at the end of the reperyment period.

C'alculation (TV) t. £ $14 \mathrm{z} 99: \sim 1$.
(3) The difference will be the amomet of origimal loan which will be unproivided for in the rase of a rleficicney or procided for in excess in the rase of a surplus (as found

(4) Adjust the original instalment, as in ing. b and ! in Method. 1, abore.
(5) Prepare a statement showing the fimal repuyment of the loan by the operation of the sinking fumd under the amended romditions. N゙tatement IVI. A.
(6) Prepare a pro forma areount, as mentioned abore.

$$
\text { No. } \because, \text { chapter IVI. }
$$

Method III. The dinect mesmod, base' entitel! upon the prespet position of the fund. S'tatement IVI. .
(1) C'alculate the amomut which should stand to the eredit of the fund, being the areamulation at the edrulated rate, of the anumal instalments which should hare been set aside. ('alculation (11) :. t9939\%7.
(2) Ascrtain the value of the present investments representthe fund, including, in the case of a local authority the loan repaid by means of the simking fund. £9 $46.3 \cdot 00$.
(3) The diffrence between thr above amounts so found, will be the deficieney or surplus in the amount of the fund at the time of making the enquiry. Deficicney. £469\%44.
(4) Calculute the anmuity or ammual instalment of which this sum is the present ralue, depending unon the period over which the eorrection shatl extend.

> ralculution (NT) 3. £45.594.
(5) Adjust the original simking fund instalment by arding to it the instalment so obtained in the case of a deficiency or by deducting it in the case of a surplus.
(6) Prepare a statement showing the fimal repayment of the loan by the operation of the fund under the amended conditions. Statement ITI. A.
(7) Prepare a pro forma account, as mentioned above. No. 2, Chapter NTI.

Method IV. The mytal norbabet (balince of loan) method, based "pon the future ammual increment and the present position of the fund.

Statement XVI.B.
This method will be fully discussed in Chapters XTI und IXII.
(1) Ascertain the calue of the prescnt investments representing the fleme, including in the case of a local authority, the loom repuid by means of the fund, as already deseribed.
£9463.00.
(2) Deduct the calue so obtained from the amount of original loan repayable at the end of the prescribed period.
£26495.00.
(3) The remainder represents the balance of original loan to be prorided by the aecumulation of the future or amended anmual increment.
£1~03:00.
(4) Calculate the ammity, or annual increment required to provide the remainder so found, at the end of the prescribed period at the future rate of accumulation. C'alculation (NV^{\prime} I) 9 . £ $10.57^{\circ} \cdot 0.33$.
(5) Deduct therefrom the future annual income to be receiced from the present investments. $£ 3: 31: 205$.
(6) The remmimber will be the amended annual instalment to be provided out of revenue or rate instead of the original instalment. £ั゚:5•82S. The difference betucen the two instalments will be the additionnl annual instalment found by either of the precelling methods. E ± 5.594
(r) Prepare a statement showing the final repayment of the loun by the operation of the sinkiny fund under the amended conditions. Statement SII. A.
(S) Prepare a pro forma account, as mentioned above.

No. 2, Chapter IIY.
Note Calculations (XI°) 1 and (Nl°) 2 are given in full at the end of this Chapter. The remainder are giren, in an abbreriated form, in the 1 ppendir.

Calcelation of a Typical Sinfing Fuad. The previous chapter contains a brief summary of the nature of the problems likely to arise with regard to sinking funds of all kinds both in connection with local authorities and commercial or financial undertakings. There may be at times a combination of the several variations, hut in the first instance each problem will be considered alone, deferring the examination of more complicated cases. In order to do this in a consecutive manner, an imaginary sinking fund will be adopted which will be used to illustrate the whole of the examples to be afterwards considered, because by this means only is it possible to apply the results obtained in comsidering the simpler problems, to those of a more complex nature. It will be assumed that the sinking fund is in respert of a loan of $£ 26,495$, payable at the end of a period of 25 years, and that the instalments will be set aside annually, and will aecumulate by investment at $3 \frac{1}{2}$ per cent. per annum. The first step is to ascertain the ammal instalment, and the calculation will he made upon standard calculation form No. 3x, bey the three methorls deseribed at the head of Chapter XIII. See Calculation ($\mathrm{XV}^{\text {P }}$) 1. In this case, as in all others, the method by formula is shown hecause although the methods by table, inchurling 'Thoman's, are much shorter, yet all the published tables contain only a limited number of rates per cent.

Further, the tables are not of much assistance when it is necessary to ascertain the rate per cent. or the number of years with accuracy, which can only be done by the method by formula, and then sometimes only approximately. Anyone depending upon the published tables alone without a knowledge of the method by formula is at a great disadvantage when the book of published tables is absent. An acquaintance with the methods by formula and a table of logs. is all that is required, and a very small memorandum book will contain the whole of the formulæ mentioned in this work, which will be found at the head of the various chapters, and also in Chapter I dealing with the standard calculation forms prepared by the author. There is a further adrantage gained by a knowledge of the formulae and how they are arrived at, namely, a clear understanding of the principles underlying the theory of compound interest which renders it an easy matter to make all calculations by one or more alternative methods and thereby prove the accuracy of the results obtained. In making a calculation similar to the foregoing in which it is necessary to multiply or divide a large principal sum by a figure containing 5 places of decimals it is important to be extremely careful to obtain the exact logs. or antilogs. by means of the tables of proportional parts which will be found in the margin of the log. tables. In the above instance, and in all other cases where it is required to find the \log of R^{N}, the \log. of R should be carefully ascertained, especially as to the last 3 or 4 figures. In order to obtain the Nth power of R, the \log. of R is multiplied by 25 , and any error in the last two figures will have a material effect upon the result so found by multiplication. For this reason, in Table V. (A.), in Chapter V^{r}, containing the values of (R) for various rates per cent. the corresponding logs. of (\mathbf{R}) are given to eight places instead of seven as in the usual log. tables. These logs. may be multiplied by the number of years and the seventh figure adjusted, leaving out the eighth figure. The logs. of R^{N} are given in Thoman's tables for many rates per cent., and even in cases where the method by formula is used it may be taken direct from Thoman's tables with a saving of time. The logs. of $\left(\mathrm{R}^{\mathrm{N}}-1\right)$ cannot be found from the tables, but only by calculation, although the actual values of $\mathrm{R}^{\mathrm{N}}-1$ may be found by deducting unity from the actual values given in Table I.

Calculation (XV) 1 shows that an annual instalment of $£ 680234$ is required, and the pro forma account No. 1 at the end of this chapter shows the normal accumulation of the fund.

Method of Ascertainisg the Position of a Sinting Fund at axy Time. Having ascertained that an annual sinking fund instalment of $\mathscr{L}^{6} 680 \cdot 24$ is required to be set aside and accumulated at $3 \frac{1}{2}$ per cent. per ammon for 25 years to repar a loan of $£ 26,495$, at the end of that period, this information will now be applied to an enquiry into the position of the fund at the end of the 12 th year. In an investigation of this nature occurring in actual practice the annual instalment would of course be the basis of the enquiry as it would have been in operation for a period of 12 years. The first stage of the actual enquiry is to ascertain the amount which should now stand to the credit of the fund, on the assumption that the annual instalment has been regularly set aside and has been promptly invested at the end of each year, to yield $3 \frac{1}{2}$ per cent. This amount, as shown by Caltulation (XV) 2 , should be $£ 993 \cdot \sim 44$. The next step is to ascertain the actual amount standing to the credit of the fund in the books of the local authority or private undertaking and then to compare this amount with the actual value of the investments representing the fund, including in the case of a local authority the loans redeemed by means of the fund. In the case of a commercial or financial undertaking there may not be any obligation to invest the fund in specific outside securities, and the amounts to be charged amually against the profits of the concern may be allowed to remain minvested and go to swell either the floating or fixed assets. In such a case it may, and will most probably, happen that the book-keeping has been correct, and that the profit and loss account of the undertaking has been each year charged with the proper annual instalment and also with the proper annual interest upon the increasing balances to the credit of the fund. Inder such conditions there will rarely be any necessity for enquiry secing that the fund will always stand in the books at the correct amount, and any deficiency of assets representing the fund will not be apparent, but will be merged in the general state of the assets of the concern. But in the case of commercial and financial undertakings, where there is an obligation to take the amount of the ammal instalments out of the floating assets of the concern and insest the same in sperific outside securities, the case is exactly similar to the conditions imposed by Parliament upon all local authorities, and may be treated on precisely similar lines. The deficieney in both cases may arise in two wars, even if the ammal instalments have been regularly set aside and the proper amount of moner actually paid into the sinking fund account. The first cause of the deficiency may be
that owing to delay in investing the instalments, or owing to a fall in the rate of income received from the investments, the frod has not acemmulated at the rate originally anticipated and upon which the calculation of the original ammal instalment was based. The second canse of the deficiency may be that the investments have depreciated in value and cannot now be considered as representing the amount standing to the credit of the fund, and there may have been in addition an actual loss on realisation. But it is necessary to go further and assertain whether these inrestments mill, or will not, as far as can be judged, be of such a value at the end of the reparment perionl that they will fulfil the oripinal purpose of redeeming their proportion of the loan. As already remarked in dealing with the present investments in Chapter XIV, this is a very difficult matter if the unexpired reparment period is a long one; and it is therefore the general practice to assme the future estimated rate of accumulation on the low side, learing any further adjustment to be made at a later date when the conditions will be better known. In the case of local anthorities, as will be seen by a perusal of Article 11 (?) of the Comety Stock Regrulations of 1891, the Local Government Board are empowered to take cognisance of such matters, and the same supervision may be said to apply to the whole of the loans of local authorities. In the case of commercial or financial untertakings the aderpuacy or otherwise of these investments and of the fund generally would be investigated by the auditors of the company or by or on behalf of the foan holders. In the present chapter it will be assmmed that there is a deficiency in the sinking fund of a definite amount arising from any of the alove canses, but for the present the problem will not be complicated in any way by a rariation in the period of reparment or in the future rates per cent. of income or of accumulation.

The Tariods Metiods of Coriecting a Deficiectiy in a Sinkivg Fuxd. Having assumed that there is now an actual ascertained deficiency in the sinking fund the various methorls will now be considcred by which it may be made good. In the case of a local authority such a deficiency may often arise, but generally it is of small amomet due entirely to a reduction in the rate of income on part of the fund uninvested and in the bank. In practice this is met by charging auy such deficiency to the general revenue or rate accoment of each rear. If the deficiency in the case of a local authority is large, owing either to serious omissions in previous years or to the accumulation of
many small amual deficiencies, the matter would be deeided by the Local Goverument Board or by Parliament when next powers are sought by special Act. This need not now be disenssed in detail because all the arailable methods will be fully described later. Taking actual figures, it will be assumed that the above imaginary sinking fund (requiring an annmal :nstalment of $£ 680 \times 34$ to repay $£ 26,495$ in 25 years at an accumulation rate of $3 \frac{1}{2}$ per cent.) momnts at the end of 12 years to \ldots... £946:3000 instead of the correct amount shown by Caleulation

$$
\text { or a deficiency of } \pm 469.74
$$

and that the conditions governing the fund require that this deficiency should he made good in some manner out of rate or revenue, or ont of profits in the case of a commercial or financial whdertaking.

There are several ways in which such a deficieney may be correrted, namely:-
(a) By an immediate parment of the deficiency of $£ 469 \cdot 74$ into the fund, which need not, howerer, be considered, becanse, although the somest financially, it has no bearing upon the subject under review.
(b) By an additional ammal sinking fund instalment to be pread over the whole of the mexpired 13 years of the miginal reparment period, in amgmentation of the original ammal instalment of $£ 6802: 4$.
(Variation I, Chapter XVI.)
(a) By an additional ammal sinking fumd instalment to be spread over a shorter period than the full umexpired term of $1: 3$ years.
(Variation II, Chapter XVI.)
Having dismissed the correction hy ammediate parment into the fund, the last two alternatives will be applied to the imaginary defiedency in order to asertain the corvected ammal instalment conserquent thereon. The abovedeficiency of $£ 469$ - F 4 mpresents an amome of momer parable now, being the amomet (in the sense in which it is used in Table IID) of past ammal omissions aremmatated at : ? ${ }_{2}$ per rent. It does not represent an "puivalent amome of the original loan, as shown later by Calconlation (AV) f. Stated in tems of the original loan, it is
 of that loan, reparable in $1: 3$ years from the present time, the
repayment of which has not in the past been provided for as it should have been.

The several methods of adjusting the deficiency given in summary form at the head of this chapter will now be described in detail, commencing with the direct method, III, which is the simplest, after which Method I will be considered, followed by Method II, leaving Method IV to be dealt with in the following chapter.

Method II. The present deficiencr of $£ 469$ itt, if not complicated by other varying factors of time or rate per cent., may be regarded in its simplest form as the present ralue of an additional future annual instalment required to be set aside and accumulated during the unexpired portion of the original reparment period in angmentation of the original instalment: and in the summary of methods at the head of this chapter this is described as the direct method No. III. The additional anmual instalment is found by Calculation (XY) : which shows that the deficiency of ± 469.74 is the present value of an additional annual instalment of ± 5594 to be set aside and accumulated at $3 \frac{1}{2}$ per cent. during the mexpired $1: 3$ years of the original reparment period. The same result is obtained by C'alculation (XVI) 1 in the following chapter, which shows that the annual instalment which will amount to $£ 2: 3+659$ of original loan at the end of the period is also ± 5594. The above amount $\left(£ \begin{array}{l}3 \\ 4\end{array} 69\right.$) of original loan (by Calculation (XV) 6 in this chapter) is shown to be the accumulated amount of the present deficiency of $£ 469.7 \pm 4$.

Metnod I. The investigation will now be contimed on the lines set out in Method I, at the head of this chapter. The present position of the fund may be stated in terms of the present ralue of each of the component parts of the fund, namely, the present investments, the deficiencr, and the remaining original annual instalments. Seeing, however, that the object of the fund is to repay the loan, and that other canses of adjustment all affect the ultimate amount of the loan, the effect will be more clearly shown by reducing the whole of the factors in all cases to terms of loan, reparable at the end of the prescribed period. This will require three calculations, as follows:-(1) Ascertain the sum to which the present investments ($£ 9,46: 3$) will accumulate at the end of the unexpired period of 13 years at $3 \frac{1}{2}$ per cent. See Calculation (XV) 4 . (\boldsymbol{Q}) Add to this amount the sum to which the remaining original
ammal instalments of $£ 680 \cdot 2: 4$ will amount at the end of the same period, also accumulated at $3 \frac{1}{2}$ per cent. See Calculation (XV) 5. The sum of these two factors will represent the reduced portion only of original loan which would be provided if the present deficiency were not corrected. This total added to the amount of $\pm 33+659$ to which the present deficiency of ± 469 rit would accumulate in I:3 ycars at $3 \frac{1}{2}$ per cent. [see Calculation (XV) 6] will make up the total amount of the original loan. This last factor is the measure of the deficiency expressed in terms of original loan, and may be treated in the same way as the full amount of the loan, in Calculation (XV) 1 , to find the original ammal instalment. The required annual instalment so found, namely, ± 45594, represents the additional annual sum to be set aside and accumulated in augmentation of the original ammal instalment of ± 680234. See Calculation (XIC 1.

The three calculations to show the equivalent amounts of original loan will he made as before hy formula and logs.; and also by Table III and Thoman's tables. There is really not any necessity to prove the result by further calculation because the above results, added together, should be equal to the total amount of original loan to be provided at the end of the prescribed period.

Metmon II. As already stated in the summary at the head of this chapter, the sum of $£: 3+659$, being the amount of loan which will remain umprovided if the present defieiency be not corverted, may also be ascertained by leaving ont of account the future origiual anmal instalments (which, perse, are unaffecterl by any present deficiency in the fund), and comparing the ultimato accumulated amount, at the end of the period, of the present investments of $£ 946: 00$ with the accumulated amount of the sum of $£ 99: 2 \cdot 544$ which, as shown by ('alculation (XVII) 2 , should hare been in the fund if the original anticipations had been realised, as follows:-

The ultimate amount of the present insestments of t9tfry00, as shown by Calculation (XV) 4, will be...
$£ 14 \div 99 \cdot 710$
and, in Calculation (X VII) ? it is shown that the above sum of $£ 99: 20 \cdot 44$ will in 13 years at $3!{ }_{2}^{1}$ per cent. amount to $\ldots \quad \ldots \quad \ldots \quad \ldots \quad . . .215534: 375$

$$
\text { a difference of (artually } £ 2:+6 \cdot 659) \quad £ 7: 3+665
$$

which, as prosed by Calculation (NV) 6 , is the ultimate amount of loan represented by the present deficiency of $£ 469 \% 44$. The following summary will make the matter clear:-

A Deficiency in the Fund.

 Statement XV. A.
Balance
beng
leficien'y
734659

$$
\begin{aligned}
& \text { Metual } \\
& \text { Valne of } \\
& \text { l'resent } \\
& \text { investments. }
\end{aligned}
$$

$91(i \cdot: \cdot(0)$
14799.710

$99: \cdots \cdot 74$
$155: 4 \cdot 3: 5$
$\cdot 110!17:[11).[1:$,
XVII):

of 1ha 12th voill...
Amomnis of oriorinal
loan which will be
providerd liy the
arcounumbationof the
above for 1:\% years

Calculation (NT^{\prime}) 3 shows that the above deficiency of $£ 469 \cdot \sim 44$ is the equivalent present value of an annual instalment of $£ 45594$, which, accumulated for 13 years at : $3 \frac{1}{2}$ per cent., will, as shown by Caleulation (XTI) 1 in the following chapter, provide the above portion namely $£ 234659$, of the original loan.

The following Statement XV. B. shows the present position of the fund, and also the amount of loan which will be prorided at the end of the mexpired portion of the repayment period, namely, 13 rears, by the accumulation of the amount now standing to the credit of the fund to be increased by the remaining original annual instalments, but without any correction being made to adjust the present deficiency of $£ 469 \cdot \tau 44$. The final reparment of the loan after correcting the present deficiencr by an additional annual instalment will be shown in Statement XVI. A. in the following chapter.

A Deficiency in the Fund．
 Statement XV．B．

The Deductive Method．No．I．

Showing the position of the fund at the end of the 12 th year， and the amount of loan which will be unprovided at the end of the repayment period if the present deficiency be allowed to accumulate，instead of heing immediately corrected by an additional annual instalment．

Present investments（at end of 12 th year）$£ 946 \% 00$
Amount thereof，accumulated for $1: 3$ years at

Original annual instalment ：－－

Amount of $\pm 680 \cdot 234$ per annum，for 13 years at
$3 \frac{1}{2}$ per cent．Calculation（XV）5 $£ 10960.62$
Provision already made will repay loan of ．．．．．．£25 26033

Deficiency，being the balance of loan mprovided for，represented by the present deficiency of $£ 469 \cdot 744$ ，accumulated for $1: 3$ years at $3 \frac{1}{2}$ per

Amount of original loan £26:49500

Additional annual instalment required，
Calculations（XV） 3 and（XVI） $1 \quad £ 45.594$

Amended annual instalment，
Original anmual instalment ．．．．．．．．．．．．$£ 680 \cdot 234$
Additional amual instalment ．．．．．．．．．．．． 45.594
さった58゚8

The final repayment of the loan by the operation of the sinking fund after making the above adjustment in the ammual instalment is shown in statement XVI．A．，and hy the pro forma account，No．2，Chapter XVI．

Pro forma Sinking Fund Account．No． 1.

Loan of $\mathfrak{E} 26,49.5$ ，repayable at the end of 2.5 yoars．

$$
\text { Anuual Instalment. Calculation (XV) } 1 .
$$ Rate of Accumulation， $3 \frac{1}{2}$ per cent．

Showing the normal acrumulation of the fund．

Year．	$\begin{aligned} & \text { Amount in } \\ & \text { the funmi } \\ & \text { at beefining } \\ & \text { of year. } \end{aligned}$	$\begin{aligned} & \text { Income } \\ & \text { receicedf romn } \\ & \text { investments. } \\ & \text { inv per cent. } \end{aligned}$	$\begin{gathered} \text { Innual } \\ \text { sinking fund } \\ \text { instalment. } \end{gathered}$	In：ount in the fund end of year．	Yea
1	Nil	Nil	$680 \cdot 294$	$680 \cdots 34$	1
2	$680 \cdot 234$	23.808	680－2\％4	$1384 \sim 26$	2
8	1：384276	$48 \cdot 450$	$680 \cdots: 4$	2112960	3
4	2112960	33954	680：234	$2867 \cdot 148$	4
5	$2867 \cdot 148$	100：350	680ッ？	$3647 \cdot 7 \cdot 9$	5
6	$36+5 \cdot 72$	$127 \cdot 651$	680．2：4	4.55 .635	6
i	44.59 .937	155.945	680 $0 \cdot \mathrm{P}$ ：4	5291 －818	7
S	5291818	$185 \cdot 21: 3$	$680 \cdot 2: 4$	6157×65	8
9	6157×65	215504	680×24	－05\％0003	9
10	705：\％00：3	246.853	680－2：34	2980．090	10
11	2980.090	279.302	$680 \cdots 2$.	89：99626	11
12	8939.6238	312.884	6880 $2: 3.4$	99：\％－「4	$1:$
1：3	9932－74	$845 \cdot 648$	1880 2 2 4	10960626	13
14	$10960 \cdot 626$	383.68	（980‥34	$1202+48 \%$	14
15	$1202+48$	$420 \cdot 85$		1：31255\％	15
16	1：312555：3	4595395		$1+265 \geqslant 0:$	16
17	14265：202	$499 \cdots 8$		$154+4$－20	17
18	1544\％	540.515	（900 0×3	10，665519	18
19	16666519	5 5：\％－ 9 9：	（6）0 $0 \cdot \underline{1}$	17929046	19
20	$12929.041 ;$	1925\％	6，40 $2: 34$	192：36：97	$\because 0$
21	192：36－797	19\％：30．63	（680 0×3	$20.90 \cdot 99$	$\because 1$
2	$20.590 \cdot 299$	－ $20 \cdot 691$	（680\％	21991－194	\because
2：	21991－194	769．69\％	（6：3） $10 \cdot 6$	2：＋41－120	$\because 3$
21	$29+41 \cdot 120$	$82(0)+9$	680＊2：4	$\because 49+1 \cdot 99$	$\because 4$
25）	$249+1-79 \%$	小199\％	68030．	$\because 6495000$	25

Calculation (XV) 1.

Standard Calculation Form, Yo. 3x.
To find the annual sinking fund instalment to be provided out of revenue or rate to repay the loan under the original conditions laid down at the time of borrowing.

Table III.

Required the annual instalment to be set aside and accumulated as a sinking fund at $3 \frac{1}{2}$ per cent. per annum to provide £26,495 in 25 years.
(A) By Formula. $\quad \mathrm{A} y=\mathrm{M}\left(\begin{array}{c}\mathrm{K}^{\mathrm{N}}-1\end{array}\right)$ Rule 1, Chapter XIII.

$\begin{aligned} & \text { Log. } \\ & R^{N}-1 \end{aligned}$	Log. Ratio I/ultiply Log. R by	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{r} 1 \cdot 035 \\ 25 \end{array}$	$\begin{array}{r} 0.0149403 \\ 25 \end{array}$
		R^{N}	$(1 \cdot 0.35)^{25}$	03735085
	Convert Log. to melinary number dedurt mity	R^{N}	$\begin{aligned} & 2 \cdot 36924 \\ & 1 \end{aligned}$	
	- Leg. of this is	$\mathrm{R}^{\mathrm{N}-1}$	$1: 36: 224$	$0 \cdot 1345738$
	Log. Amount of Loan add Log. r	$\overline{I I}$	$\begin{aligned} & \because 6,495 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 4 \cdot 42: 16: 39 \\ & 2: 5440680 \end{aligned}$
deduct $\mathrm{Log} .\left(\mathrm{R}^{\mathrm{N}}-1\right)$ above		$\begin{aligned} & M r \\ & R^{N}-1 \end{aligned}$		$\begin{aligned} & 2 \cdot 9672319 \\ & 0 \cdot 1345738 \end{aligned}$
		1.4		2.8326581

(B) 13_{y} Table III. $\quad \lambda_{y}=\frac{11}{R^{N}-1} \quad$ Rule 2 , Chapter XIII.

Log. Amount of Loan Table III. 25 years, $3 \frac{1}{2}$ per cent. Amount of $£ 1$ per annum deduct Log.	II	26,495	$4 \times 42: 16: 3$
	$\mathrm{K}^{\mathrm{N}}-1$	3894986	1.5905058
	r		
	$\lambda!1$		28329581
Required annual instalment, $\pm 680 \cdots 336$.			
(C) By Thoman's Table. $A y=11\left(\frac{t^{n}}{R^{N}}\right)$ Rule : , Chapter XIII. $3 \frac{1}{2}$ per cent., 25 years.			
Log. Amount of Loan add. Log. u^{n}	3	26,495	$4 \cdot 42: 16: 39$
	a^{n}		8.7830029
deduct Log. R^{N} in$\text { Table }+10$	II a^{n}		$13 \cdot 061668$
	R^{N}		10379508\%
	$A_{1 /}$		$2 \cdot 8326581$

Calculation (XV) 2.

Standard Calculation Form, No. .3.
To find the amount which should stand to the redit of a sinking fund at any time.
Required the amount which should stand to the credit of a sinking fund representing the accumulation of an annual instalment of $4680 \cdot 2: 4$ for 12 years at $3 \frac{1}{2}$ per cent.
(A) By Formula. $\quad \mathrm{I}=\mathrm{A} y\binom{\mathrm{R}^{x}-1}{r}$ Rule 1, Chapter VI.

$\frac{\log }{R^{\mathrm{N}}-1}$	$\left\{\begin{array}{c} \text { Logr. Ratio } \\ \text { I/ultiply Log. R by } \end{array}\right.$	R	$\begin{array}{r} 1.035 \\ 12 \end{array}$	0.0149403 12
		$\mathrm{R}^{\text {N }}$	$(1.035)^{12}$	$0 \cdot 1792842$
	Convert Log. to ordinary number deduct mity	$\mathrm{R}_{-1}^{\mathrm{N}}$	$\begin{aligned} & 15110 \pi \\ & 1 . \end{aligned}$	
	Log. of this is	$\mathrm{R}^{\mathrm{x}}-1$	0.51102	1.7084792
Log. Annuity add Log. $\mathrm{R}^{\mathrm{N}}-1$ above		Ay	$680 \cdot 294$	$9 \cdot 8396581$
		$\mathrm{R}^{N}-1$		1.7084792
deduct Log.r		$\operatorname{Ay}\left(\mathrm{R}^{\mathrm{x}}\right.$		$2 \cdot 54113 \% 3$
		r	$0 \cdot 0.35$	2.5440680
		M		$3 \cdot 9970693$

Required amount, $£ 99: 3 \cdot \tau 4$.

(B) By Table III. $\quad \mathrm{M}=\mathrm{A} y\binom{\mathrm{R}^{\mathrm{N}}-1}{}$, Rule 2 , Chapter VI.				
Table III. 12 years, $3 \frac{1}{2}$ per cent. Amount of $£ l$ per annum add Log. Annuity		$\mathrm{R}^{\mathrm{x}}-1$	$\begin{aligned} & 1 \pm 60196 \\ & 680 \cdot 294 \end{aligned}$	$\begin{aligned} & 1 \cdot 16+4112 \\ & 2 \cdot 8326581 \end{aligned}$
		$\begin{array}{r} r \\ A_{y} \end{array}$		
		II		3.9970693
(6) By Thoman's Table. $\quad \mathrm{M}=\mathrm{A} y\left(\frac{\mathrm{R}^{\prime}}{1^{\prime \prime}}\right) \quad$ Tule 3 , Chapter VI. $: 3 \frac{1}{2}$ per cent., 12 years.				
Log. Ammity add Lag. K^{N} in $\text { Table }+10$		A!	$680 \cdots 34$	$\because 8826581$
		R^{N}		10•1790842
		Ay 1^{x}		13.0119423
				$9 \cdot 0148730$
deduct Log. a^{n}		M		3.9970693

CHAPTER XVI.

SINKING FLND PROBLEMS RELATANG TO THE AMOUNT IN THE FIND.
 The correction of a deficiency in the fund.

Variation I.

By an additional añeal instalaent to be set aside DURLNG THE WHOLE OF THE UNEXPIRED PORTION OF THE REPAYMENT PERIOD. STATEMENT XII. Λ.

Variation II.

 dURANG THE EARLIER PART ONLY OF THE UNEAPIRED PORTION of the rephyment period. Statement IVI.C.

Summary of the methods of aduestixg a deficiency. The several methods described. The anytil increment (Balance of loan) method. Statement showlog the FINAL REPAYMENT OF The LOAN Hy The oferation of the AMENDED ANNUAL INSTALMEAT, IN EACII OF TIIE ABOVE GARLATIONS.

Summary of the methods of adjustment.

Tariation I (Deficiency), in which the adjustment is made by an additional anmual instalment to be set aside during the whole of the uncxpired portion of the original reperyment period. Statement TVT. A.
(1) Ascertain the amount of the present deficicney and calculate the equivalent amount of original loun by one of the methods described in Chapter SV. Calculation (TT) 6.
(2) C'alculate the additional ammual sinking fund instalment to be set aside and accumulated for the whole of the unexpired portion of the origimal repayment period to provide the above equiralent amount of original Loan. Calculations (IT°) \because and ($\mathrm{KII)7} £ \pm 5594.$.
(3) The additioual anmual instalment so ascertained added to the original annual instalment will give the augmented ammal instalment to be set aside during the whole of the unexpired portion of the repayment period.
(t) Prepare a statement showing the final repayment of the loan by the operation of the fumd under the amended conditions.

Statement TIT. A.
(.j) Prepare a pro forma account showing the amownt which should be in the fund at the emb of each year of the uncepined portion of the repayment period for after reference. Proforma Account, No. 2.

Virition II (Deficiexcy), in which the adjustment is made by an additional anmul instalment ($£ 10 \pm 039$) to be set aside during part only (5 years) of the uncxpired portion (1.3 years) of the original repayment period (25 years).

Statement ITI.C.
Note. In order to make the following summary perfectly clear it contains (in brackets) the results ascertainct in the example afterwards worked out in detail. The ammul increment (ratio) method, previously referred to in Chepter SIT, cannot be applied to euses in uhich the amended instalment is not spread equally over the whole of the period.
(1) Ascertain the amount of the present defieieney ($£ \notin 69 \% 44$) and calculate the equiralent amount ($£ \sim 3 \pm 659)$ of original loan, as described in t'hapter NT.

C'alculation (NT) 6 .
(2) Diride the uncxpired portion (1.3 yeurs) of the original repayment period ($\because \cdot \mathrm{O}$ yerers) into tero parts, as follows:1st portion (5 years), during which the additional annual instalment is required to be set aside.

2nd portion (8 gears), durin! which the additional ammual instalment is not required to be set aside. but only the ammal instalment as originally aseertained.
(3) Calculate the present calue (6.50% :90S) of the above equivalent amount ($(631 \cdot 0.99)$ of the original hoan, as if it reve due at the end of a momber of yeness (is) equal to the secoul portion of the uncepired repuyment period (7.3 ycars). ('alculation (NI°) 3.
（4）Calculate the additional annual instalment（ $£ 111+(1.39)$ t＂ be set aside and acenmulated for a mmber of years（5）in the first portion of the unexpired repayment period（1：3） yeurs）to prorine the present relue（ $55.590 S$ ）so found， 1 ： abore． （＇alculation（ $\mathrm{N「}$ ） 4 ．
（5）The additiomal annual instalment so fomm（ $£ 10 \pm 039$ ）

 set aside during the first portion（ 5 years）of the emeapied repeyment period（1：3 y＇ars）．
（6）The original anmal instalment（ $£ 68(1): 3 t)$ will contimue to be set aside and arenmulated Juring the second portion （ 8 yours）of the unerpired mpayment period（19）years）．
（7）Prepare a statement showin！s the final mpayment of the loan by the operution of the fund under the amended comditions．「゙tutement $\mathrm{Il}^{\circ} \mathrm{I}$ ．C．
（8）Prepuer＂pro forma asount shoming the amount which shonlt be in the fund at the end of each year of the uncerpired period for reference in afier years．

Pro forme Accomut，No．3．
Xote．The erolvalutions：in this anl subsempent thaptere will be foumd in the 1 ppendin，but cucle mblulation will be shomen by only whe of the three methods given in the standerd forms．

Tardamos 1．The emrection of a defiefency in the fund by an additional annual instalmert to be set aside during the whole of the unexpired portion of the reparment period．
statement XII． 1.
In Chapter XV．the factors relating to a defiedency in a sinking fund have been fully diseussed，and several methods described by which to ascertain the resulting additional annual instalment to be spread equally over the whole of the unexpired portion of the repayment period．Two alternative methods have been pointed out by which the defiefener may be corverted， both of which agree in providing an additional annal instal－ ment，but differ as to the number of years over which such increased contributions shall be spread．Sound finaner demands that the error should be put right by an immediate payment of the deficiency into the fumb，or that the increased anmual contribution should be spread over a shorter term than the fult unexpired portion of the original repayment period，but the
circumstances of individual cases may render it more equitable， or perhaps more conrenient，that the adjustment should be spread orr the longest possible period．

The present deficiency of $£ 469 \cdot \mathrm{ztt}$ if immediately paid into the fund and accumulated until the end of the period，will then provide $\pm \pi: 3 \cdot 659$ of original loan which would otherwise have been unprovided for．The additional annual instalment of $\pm 4559+$ ，to be set aside and added to the fund during the whole of the mexpired period，has already been ascertained by Calculation（ XV^{\prime} ） 3 ，and it will now be proved by a further Calculation（ IV^{\prime} ） 1 upon the author＇s standard calculation form No．Ax，loased upon Table IH，which is the usual method of funding the sinking fund instament．This and other calculations subsequently referred to will be found in the aprendix．

Haring ascertained the required additional anmal instal－ ment，it is now possible to review the operation of the fund so amended in order to show the final reparment of the loan by the following statement XVI．A．．which will apply equally to all similar cases of adjustment due to a deficiency in the fund， irrespective of the methor by which the additional annual instatment is ascertained provided that such additional annual instalment be spread equally orer the whole of the unexpired portion of the repayment period．

The following Statement XVI．A．also shows that the present insestments of $£ 9,46: 3$ will，if accumulated at $: 3 \frac{1}{2}$ per cent．until the end of the period，then provide for the reparment of $£ 14799 \div 1$ of original loan．Before making the above correction the balance of the loan mprovided for was repre－ sented by：－

The remaining original anmal instalments of ± 680234 and their accumulations

Calculation（土乌）5 $£ 109606$ ？
The deficieney at the end of the 12 th year $£ 469 \cdot$ it
and the loss of accummated interest
rallsed therely ．．．．．．．．．．．．．．．20．9：9
£っ： $4 \cdot 67$

Balance of Loan ．．．
$£ 11695: 9$

A for making the above adjustment this amount will be provided by the areumblation of the aurmented annual instahment of

The Anvual Increment (balance of loan) Metiod. The annual increment has been fully described in Chapter XIX, where it is shown that it may be used to simplify the majority of the adjustments in a sinking fund, rendered necessary by any rariation from the original conditions as to the repayment of the loan. There is, however, one limitation, namely, that any variation in the rate of income to be received upon the present investments, or in the rate of arcumulation, must apply equally to the whole of the future period of repayment, which, however, may be increased or reduced. It is also necessary that any increased or reduced anmual instalment, consequent upon any such variation in the original conditions, shall be spread equally over the whole of the mexpired portion of the reparment period. For this reason, therefore, the methor has been applied in Statement XVI. B. to the foregoing example (Variation I) in which the deficiency of $£ 469 \% 4+$ is made good by an additional annual instalment of $£ 45594$, to be spread equally over the whole of the unexpired portion of the repayment period, but the methot will not apply to the example following, namely, Tariation II, in which the alditional annual instalment is required to be spreat over the earlier years only of such unexpired term. If this method be applied to the latter example the result would be only the cquated annual instalment, which, howerer interesting from a theoretical point of view, would not be of any practical use maler the artual conditions. An example of an equated anmuity is given and fully described in Chapter XXTII.

This methorl of making the adjustment of a sinking fund by means of the ammal increment is practically the same as that adopted in the case of local authorities, where the whole of the anmual instalments, as and when set aside, are immediately applied in the actual repayment of debt. Section $234(5)$ of the Public Health Aet, 1875, provides that where any part of the fund is so applied there shall be paid into the fund and charged to the rate account the interest which would have been earned by the part of the fund so applied. If it be assumed that the whole of the fund is so applied in repayment of the deht, and the rate of interest payable upon the loan is the same as the rate of accumulation of the fund, the amome charged annually to rate account in respect of interest and redemption charges, is the annual increment of the fund, using the term in the sense here applied to it.

A Deficiency in the Fund．

Statement XVI．A．

Showing the fical rephment of the Loax，by the operation of the sinking fund，after making the adjustment in the anmual instalment，consequent upon a deficiener in the amount which should stand to the credlit of the fund．

Cimatiox I（Deficiever），in which the additional annual instalment is set aside during the whole of the unexpired portion of the repayment period．

Equivalent
amount of original loan．

Present investments at end of 12 th year ，$£ 946: \% 00$

Amount thereof，acemmlated for 13 years at $3 \frac{1}{2}$ per cent．Calculation（ XV$) 4 £ 14.99 \% 1$

Amended annual instalment：－
Wriginal anmal instalment ．．．．．．$£ 680$ Q3．t
Additional ammal instalment Calculation（XVI） $1 \quad 4559$
£っからタータ

Amoment thereof in 13 years at 33_{2} per cent．
Calculation（XVI）ミ£1169か？9

Amome of original lom ．．．．．．．．．£2649500

A Deficiency in the Fund. Statement XVI. B.
The Annual Increment (balance of loan) Method.
To find the amended annual sinking fund instalment consequent upon a deficiency in the amount which should stand to the credit of the fund.

Sariation I (Deficiency), in which the additional annual instalment is set aside during the whole of the unexpired portion of the repayment periorl.

Amount of original loan (25 years) £26495.00
derluct amount in the fund at the end of the

Balance of loan £17032.00

Amended annual increment to be added to the fund and accumulated at $3 \frac{1}{2}$ per cent., to provide this amount at the end of $1: 3$ years.

$$
\text { Calculation (XTI) } 9 \quad £ 1057 \cdot 033
$$

dcduct income to be received from the present investments, $£ 9,469$, at $3 \frac{1}{2}$ per cent. $£ 331 \cdot 205$

Amended annual instalment, being £225.828
Original aunual instalment ... £680 234
Additional annual instalment $£ 45594$
£225•828
The rule relating to this method is stated at the head of Chapter XXII.

Pro forma Sinking Fund Account, No. 2.

A Deficiency in the Fund. (Variation I.)
Loan of $£ 26,495$, repayable at the end of $2 \cdot 5$ years.
Showing the final repayment of the loan, by the operation of the amended annual instalment of $£ 255828$, to be set aside during the whole of the unexpired period of repayment.
Statement XVI. A.
Rate of accumulation, $\rho \frac{1}{2}$ per cent.

Year.	Amount in the fund at beginning of year.	Income received from investments $3{ }_{2}^{1}$ per cent.	$\begin{aligned} & \text { Annual } \\ & \text { sinking fund } \\ & \text { instaiment. } \end{aligned}$	Amount in the fund at end of year.	Year.
1					1
2					2
3					3
4	The an	nt in the	d at the	of the	4
5	12 th ye	, $£ 9,463$,	assume	mount,	5
6	and is	equivalen	setting	ide an	6
7	annual	nstalment	$£ 648 \cdot 064$	shown	7
8	by Cal	ilation (X	10 , inst	of the	S
9	correct	nual ins	rent of $£$	2.34	9
10					10
11					11
12				$9463 \cdot 000$	12
13	$9469 \cdot 000$	$331 \because 05$	725.828	$105: 0 \cdot 033$	13
14	$10520 \cdot 0: 33$	$368: 201$	-25:8:8	$1161406 ?$	14
15	11614.062	$406 \cdot 492$	725-828	12546382	15
16	$12746: 38$	$446 \cdot 12: \%$	-25.808	1:39189393	16
17	$19918: 333$	$48 \cdot 14 \%$	-25-828	$15131 \cdot 303$	17
18	$151: 31: 303$	$529 \cdot 596$	725.828	1638672\%	18
19	16:386.727	$57: 3.535$	205808	$17686 \cdot 090$	19
20	$17686 \cdot 090$	$619 \cdot 013$	225-828	190:30.9:3	20
21	190:30.9:31	$666 \cdot 08: 3$	-25-828	20442842	21
29	20442 842	714.799	725.825	$\because 1869.469$	22
23	$2186: 469$	$765 \cdot 221$	725:8:8	23954.518	23
24	$23: 54.518$	$817 \cdot 408$	-95.828	24897.754	24
25	$24897 \cdot 754$	$8 \pi 1.418$	$725 \cdot 828$	$26495 \cdot 000$	25

Variation II. The correction of a deficiency in the fund by an additional annual instalment, to be set aside during the earlier years only of the unexpired portion of the repayment period.

Statement XVI. C.
The correction of the deficiency in this manner is more complicated than by spreading the additional annual instalment equally over the whole of the unexpired portion of the repayment period, but is not at all difficult. The factors immediately concerned are (1) the present deficiency of $£ 469 \cdot 74:(\mathcal{Z})$ the amount of original loan $£ \checkmark 3+659$, represented by such deficiency, and (3) the original anmal instalment of $£ 680 \cdot 234$.

In the present example it will be assumed that the additional annual instalment is required to be of such increased amount (as compared with the additional annual instalment of $£ 45.59 \pm$ to be spread orer the whole of the unexpired period) that it will be sufficient to make up, the present deficiency if set aside for 5 years only, instead of for 13 years. Under this alternative method the mexpired period of 13 years is divided into two parts. During the first five years the additional annual instalment will be set aside and accumulated at $3 \frac{1}{2}$ per cent. in augmentation of the original anmual instalment. At the end of the five years this additional annual instalment will cease, and will then have amounted to a sum which will continue to accumulate at compound interest for a further eight years. The accumulated amount of the additional annual instalment at the end of five years, should, at the end of the remaining eight years, amount to the balance $(£ 734 \cdot 659)$ of loan not otherwise provided for. The adjustment may be made by direct calculation, and may also be made by steps. A similar method by step has been adopted when dealing with a variation in the future rate of income to be received upon the present investments when it is known in advance that such a variation will take effect at a definite future date during the unexpired portion of the redemption period, as explained in Chapter XXVII. In order to determine the additional annual instalment to be set aside and accumulated for the first period of five years, it is first necessary to ascertain the sum to which it is required to accumulate at the end of five years, which latter sum will in its turn accumulate without further addition for a further period of eight years. At the end of the unexpired period of 13 years it is necessary to provide $£ 334659$, and the first step is to ascertain the sum which, if accumulated at $3 \frac{1}{2}$ per cent. for eight years, will amount to $£$| |
| :--- |$\cdot 659$; in other words, to find the present value of $£ 334659$ under the above conditions, namely,

£559．90s．Calculation（ $\mathrm{A} T$ ）：＇，The next step is to ascertain the ammal instalment which will amount to $£ 555 \cdot 908$ if set aside and acrumulated at $: \frac{1}{2}$ per cent．for five rears．

This is a similar problem to the previous one dealing with the present deficiency of $\pm 469 \% 4 t$ ，where it was required to find the ammal instalment to amount to $\pm T: 4 \cdot 6.69$ ，Calculation（XVI） 1，and also similar to Calculation（ XV ） 1 recuired to find the original annual instalment of $\pm 6802: 4$ ．（＇alculation（ \pm PI） 4 shows that the equal amual instalment to provide £55：－908 at the end of fise years at $3 \frac{1}{2}$ per cent．is $£ 10+0: 39$ ．The method of complying with the above conditions has now been ascertained． It has been found by Colculation（XYI）t that an anual instalment of $£ 10+0: 39$ set aside for five rears and accumnlated at $3 \frac{1}{2}$ per cent．will at the end of that time amount to $£ 555 \cdot 90$ s， and it has been found by（＇alculation（XYI）？that this sum of $£ 55: 908$ ，accumulated at $3 \frac{1}{2}$ per cent．for eight rears，will amount to $\pm \pi ; 659$ ，which is the portion of the original loan not otherwise provided for，owing to the present deficience of $£ 469 \cdot \boldsymbol{\tau 4}$ ．

The sinking fund，as amended by the results of the foregoing calculations will now consist of ：－

A present credit to the fund，represented by inrest－ ments ralued at ．．．
$£ 9463 \cdot 000$

An augmented annual instalment for 5 years made up as follows：

Original instalment ．．．．．．．．．£680 234
Additional instalment for 5 years $1040: 099$
£っ84ワン3

The original annual instalment to be continued for a further 8 years of $\ldots \quad \ldots \quad \ldots \quad \ldots \quad$.

And the abore provision arcumulated at $3 \frac{1}{2}$ per cent．，as originally catetlated，will at the end of the prescribed period of repament，mamely，e．years，be sufficient to provide the full amonnt of the origimal loan of £20 6.495 ．

In order to complete the argmont it is necessary to show the position of the fumd at the end of the 1 ath year when the additional amual instalment of $\pm 04 \cdot 0: 39$ will cease and to continue the aremmulation of the fund from that time uatil the end of the original term of 25 vears．During the second period of eight years，as previously mentioned，the original instahment
of $£ 680294$ only will contimue to be set aside and added to the fund．The following statement XVI．C．shows the final repayment of the loan by the operation of the fund after making the abore adjustment．

In the foregoing statement a break has been made at the end of the lith rear，being the end of the five rears during which the corrective instalment of $£ 10 \pm 0: 39$ is required to be set aside． The calculation might have been simplified by ascertaining， in the direct mamer shown in statement XVI．D．1，the amount of loan which will be provided by the accumulation at the end of 13 rears of the instalment of $£ 1040: 39$ to be sot aside for five years only．This direct method bestep is fully explained in Chapter XXYII，Statement（＇．．where it is applied to find the amount of loan which will be provided by the accomulation of the income from the present inrestments，such income being at rarying known rates per cent．during the mexpired period． （The ealculation might also have been made in terms of the amended annual instalment of ざTS4ンt：In．In ronclusion，a further Statement XII．D：2，has been prepared，showing the final reparment of the loan，which should be compared with Statement XTI．C．．．in order to show the simplification of the proof by the method by step．

A Deficiency in the Fund.

Statement XVI. C.
Showng the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the annual instalment consequent upon a deficienc: in the amount which should stand to the credit of the fund.

Variation II (Deficiency), in which the additional annual instalment is set aside during the earlier part ouly of the unexpired portion of the reparment period.

Present investments (at end of 12 th year), $£ 946300$
Amount thereof, accumulated for 5 years at $3 \frac{1}{2}$ per cent. Calculation (XYI$)^{5} £ 11239 \cdot 07$

Amended annual instalment :--

$$
\begin{array}{lllllr}
\text { Uriginal } \ldots & \ldots & \ldots & \ldots & \ldots & £ 680 \cdot 234 \\
\text { Additional } & \ldots & \ldots & \ldots & \ldots & 104 \cdot 039 \\
& & & & & \frac{£ \pi 84273}{}
\end{array}
$$

Amount thereof, accumulated for 5 years at

$3 \frac{1}{2}$ per cent.	Calculation (JVI) 6	£ $4205 \cdot 64$
Amount in	1ith year	£15444.71

Amount thereof, accumulated for 8 years at $3 \frac{1}{2}$ per cent. Calculation (XVI) $\mathfrak{r} £ 2033 \pi \cdot$ it

Original annual instalment (resumed) :-
Amount of $£ 680 \cdot 234$ per annum, accumulated for 8 years at $3 \frac{1}{2}$ per cent.

Calculation (XVI) $8 \quad £ 615 \div \cdot 26$
Amount of original loan £26495•00

A Deficiency in the Fund.

Statement XVI. D (1).
The A mount of (the Amount of $£ 1$ per Annum) Method by Step, by Thoman's Tables.

To find the accumulated amount of an additional annual instalment, or other annuity, to be set aside and added to the sinking fund for a limited period of years; and at the end of that period the accumulated amount thereof to continue to accumulate for a further specified period. The rate of accumulation in both periods may be the same, or be at different rates per cent.

Required the amount of an additional annual instalment of $£ 104 \cdot 039$, to be set aside for a period of 5 years, and accumulated at $3 \frac{1}{2}$ per cent. At the end of 5 years the annual instalment ceases, but the sum to which it has then amounted continues to accumulate for a further period of 8 years, also at $3 \frac{1}{2}$ per cent.

First period, 5 years. Second period, 8 years.

Log. instalment	A y	$104 \cdot 039$	$2 \cdot 0171984$
add : Log. $\mathrm{R}^{\mathrm{N}}, 3 \frac{1}{2}$ per cent. 5 years	$\mathrm{R}^{\text {N }}$		$0 \cdot 074701 \%$
Log. $\mathrm{R}^{\mathrm{N}}, 3 \frac{1}{2}$ per cent. 8 years			0.1195228
			2-2114229
add 10 to the			$12 \cdot 2114229$
deduct: $\log . a^{n}, 3 \frac{1}{2}$ per cent. 5 years			$9 \cdot 3453372$
	M		2 8660857

which is the \log. of the required future amount, namely $\ldots l_{\text {... }}$
Note. This method may be inverted to find the additional annual instalment in the first instance instead of as described in the text. See Statement XXXIV. G.

A Deficiency in the Fund.

Statement XVI. D (2).

Showing the finil repifyent of the loan, by the operation of the simking fund after making the adjustment in the annual instalment, consequent upon a deficiency in the amount which should stand to the credit of the find.

Thrition II (Deficienct), in which the additional annual instalment is set aside during the carlier part only of the unexpired portion of the repayment period.

An alternative method to statement XVI. C., based upon the method by step.

Present investments (at end of 12 th year), $\mathfrak{£} 346 \% \cdot 00$

Amount thereof, accumulated for $1: 3$ years at $3 \frac{1}{2}$ per cent. Calculation (XV^{\prime}) $\pm \pm 1499 \cdot \mathrm{i}$

Original annual instalment $£ 680$:2: 4

Amount thereof, acrumulated for 13 years at $3 \frac{1}{2}$ per cent. Calculation (XV) $£ £ 10960.62$

Additional annual instalment $\quad . . \quad . . \pm 10 \nmid 0 ; 9$
to be set aside for 5 years only, and accumulated for a further is rears at $s_{3} \frac{1}{2}$ per cent "Method lẹ step" Calculation (XVI)D. 1 £T: 6 .

Amount of original loan £゚2649500

Pro forma Sinking Fund Account, No. 3.

A Deficiency in the Fund. (Variation II.)
Loan of $£ 26, \pm 9 . j$, repayuble at the end of 25 years.

Abstract

Statement IVI. C. Rate of accumulation, $3 \frac{1}{2}$ per cent.

CHAPTER XVII.

SINKING FUND PROBLEMS RELATING TO THE AMOUNT IN THE FUND.

A surplus in the fund; how it may arise, and how it may be adjusted.

Variation I.

Arising in conseqtence of in excessive past accumulaTION OF THE FUND.

Variation II.

IRISING IN CONSEQEFNCE OF THE PAYMENT INTO THE FUND OF THE PROCEEDS OF SALE OF PIRT OF TIIE ASSETS REPRESENTING THE SECURITY FOR THE LOAN, OR A REALISED PROFIT UPON THE SALE OF AN INVESTMENT REPRESENTING THE FUND.

STATEMENT XYII. A.

SUMMARE OF THE METHODS OF ADJUSTMENT. THE VARIOUS CAUSES LEADING TO A SURPLES IN THE FLND. DIFEERENCE IN CONDITIONS AND FRACTICE IS BETWEEN LOCAL AUTHORITIES AND COMMERCIAL IND FINANCIAL CNDERTAIINGS. COMPARISON OF THE VARIOES METHODS OF DEALIVG WITH A SURPLUS. THE ANNCAI, INCREMENT (BALANCE OF LOAN) METHOD. STATEMENT SHONY NG THE FINAL REPAYMENT OF THE LOAN BY THE OPERATION OF TIIE AMENDED ANNCAI INSTAIMENT.

Summary of the methods of adjustment.

Thrintion I (Srrples), arising in consequence of an excessive past accomulation of the fund.
(1) Ascertain the actual present smplns, as deseribed in Chapter NI°.
(2) Calculate the anmuity or annual instalment of wheh this sum is the present ralue for the unerpired portion of the repayment period. Similar to Calculation (NV^{\top}) 3 .
(3) The annual instalment so ascertained, deducted from the original anmual instalment will give the reluced annual instalment to be set aside during the whole of the unexpired portion of the repayment period.
(4) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended conditions. Similar to Statement X'I. A., with the necessary modifications relating to a surplus instead of to a deficiency.
(5) l'repare a pro forma amount showing the amount which should be in the fund at the end of each year of the unerpired repayment period.

Note. The above method so closely resembles the one adopted in the case of a defieiency and the following method relating to Variation 11, that no further amplification is required. Unlike a deficiency, however, a surplus should be spread equally over the whole of the unexpired repayment period, and consequently Method 11 (Deficiency) will rarely apply.

Tariation II (Sulples), arising in consequence of the payment into the fund of the proceeds of sale of part of the assets representing the security for the loan, or a realised profit upon the sale of an investment representing the fund.

Statement IVII. A.
(1) Aseertain in the mamer described in Chapter XV, whother there is a surplus or a defieiency in the fund apart from the proceeds of realisation now under consideration; and if so, caleulate the corrective annual sinking fund instalment required. Calculation (XV) 3 .
(2) Calculate the annuity which may be purchased for the nnexpired portion of the repayment period, with the amount now paid into the fund. Calculation (XVII) 1.
[Here refer to memo. after (6).]
(3) Deduct the anmaity so ascertained from the original annual instalment, and adjust the latter also, if required, by the above corrective instalment, referred to in (1).
(4) The remainder will be the future reduced annual sinking fund instalment, to be set aside and aceumulated during the whole of the unexpired portion of the repayment period.
（5）Prepare a statement shominy the fimal repayment of the loun by the operation of the sinking fund under the amented comdifions．S゙tatement Nl＇ll．A．
（6）Prepure a pro forma account showing the amment which should be in the frum at the end of conch year of the unerpiral repayment period．Proforma Acomut，Io．t ．

Memo．If the original anmual instalment be＂perscribed sumi instead of being found by culculation in the ordinary way （see（ $\mathrm{J「} 1)$ 1），proceed by the method described under 「ariation I［（Surplus）in（hapter XI＇lII，substituting for operation（テ̃） in that methont the aboce operation（ $: ~$ ）．

A Sidplés in a Sinting Fuxi and how it mat ardee．

Although it does not fall within the province of a work of this character to mention all the various canse which may learl to the existence of a sumplus in a sinking fumd，yet it is rery adrisable to give a brief outline of the principat ways in which this may happen，and which may be divided into the following clasese，any two or more of which mary operate simultaneously ：－
（1）An exeess in the amount of the annual instalments pre－ riously paid into the fund or an increase in the rate of accumulation in exeses of the rate assmmed in calculating the original instalment．Variation I．
（2）The parment into the fund of a realised profit uron the sale of an investment representing the finnd or the proceeds of sale of part of the assets represating the sermity for the loan．Variation II．
（：3）In the case of commereial or finane ial undertakings，there may be a chamge in the ehameter of pant of the original loan，whereby the original obligation to ort aside a sinking fund is modified owing to the withdrawal of part of the loan from the operation of the fund

This will be fully disenssed in the following ehapter，where it will be shown that the preerise method of making the adjust－ ment depends mont the nature of the original ammal instal－
ment, and the problem will be divided into two parts as follows:--
A. In which the original anmal instalment was found by calculation based upon a specified period of repayment and rate of accumulation.

Variation III.
B. In which the original ammal instalment is a stated sum and is not based, exrept in a general way, upon any period of repayment or rate of accumulation.

Variation IV.
Varmtion I (Nupiucs), arising in consequence of an excessive past acrumulation of the fumd.
This will be of rare oceurence if the pro forma account already rerommended has been made out showing the operation of the fund motil maturity, and any such minor instances may be adjusted as and when they arise by transfers to the current year's rate or revenue account. In the case of larger amounts they may be treated in the mamer mentioned in Chapters NT and XVI, referring to a deficiency in the fund, but of course by reducing the future annual instalment.

Tarbition II (Surbles), arising in consequence of the payment into the fund of the proceeds of sale of part of the assets representing the security for the loan or a realised profit upon the sale of an inrestment representing the fund.

Statement XIII. A.
This chapter will deal fully with those cases in which the sinking fund obligations are modified hy the payment into the fund of the proceeds of sale of part of the security for the loan to be ultimately repaid, and attention will he directed to the difference in practice as between local authorities and commercial and financial undertakings. In the rase of a local authority the sinking fund instalment is set aside to repay the loan at the end of the period allowed under the general or special A.t. These loans are invariably expended upon works of a capital mature, and it sometimes happens that part of the property representing the security for the loan is sold. The practice generally followed in the case of local authorities is to pay such proceeds into the fund and apply the same in the redemption or reparment of part of the original loan. This is as it should be, and is the practice adopted in commercial and financial undertakings, but it has an important effect upon the sinking fund instalment. The repayment, during the period
allowed, of part of the debt out of the proceeds of sale of part of the security (instead of out of the sinking fund provided out of current rates or profits) anticipates the natural effect of the sinking fund, and by reducing the loan repayable at the end of the period correspondingly reduces the necessity to set aside in future the full original sinking fund instalment.

It is obvious therefore that the original amual sinking fund instalment may be reduced during the remainder of the term to such an amount as will provide the halance of the debt not repaid out of the proceeds of the sale of part of the assets.

This principle is followed in the case of commercial and financial undertakings, but in the case of local authorities the Local Govermment Board may require that the proceeds of such sales shall be paid into the sinking fund, and that the full amount of the original amual instalment shall continue to be set aside. The effect of this is to shorten the original period allowed for the redemption of the debt. There is not any objection to this method except that the result is to relieve the later generation of ratepayers at the expense of the present, but in its farour is the fact that it is always sound finance to repay debt as soon as possible. In the case of commercial and financial undertakings the practice varies, depending in each instance upon the conditions laid down in the deed relating to the loan. Generally speaking, it may be considered equitable in the case of such undertakings to reduce the sinking fund instalment and so maintain the original period allowed for the repayment of the debt. In the case of a debenture stork repayable on a fixed future date this would necessarily require to be so unless part of the stock were redeemed by purchase upon the open market.

The proceeds of sales of capital assets forming part of the security would, failing actual redemption, be invested in securities authorised by the deed, and the resulting income would be added to the sinking fund during the mexpired portion of the repayment period, and therefore the future annual instalments to be provided out of the profits of the undertaking would be correspondingly reduced. If, however, in the case of a commereial or finantial undertaking any such proceeds arising from the sale of part of the security were actually applied in redemption of part of the loan, instead of being invested in outside securities, the profit and loss account of the undertaking would be relieved to the extent of the annual interest payable upon such redeemed deht, but the sinking fund would not then be increased by any income arising from the
investment. Another difference between the sinking funds of commercial and financial undertakings and those of local authorities arises from the fact that in the former the annual instalment is not always charged against the profits of the undertaking but may be taken out of the general assets of the concern.

The method of adjustment will be illustrated by the following example relating to a commercial or financial undertaking.

A sinking fund has been set aside and accumulated to provide for the repayment of a loan of $£ 26,495$ at the end of 25 years-and in fixing the annual instalment the rate of accumulation was taken at $3 \frac{1}{2}$ per cent. It the end of the 12 th year the fund stands at the proper estimated amount shown by the pro forma account, and as found by Calculation (XV) $\mathfrak{\sim}$, namely, $£ 9932 \cdot i 44$. At that time a portion of the assets (forming part of the security for the loan) is realised, and produces, say, £ $£, 560$.

The trust deed provides that this amount shall be paid into the sinking fund and invested, and accumulated until the loan is repayable, namely, at the end of the 25 th year, and that the future annual sinking fund instalments may be correspondingly reduced. In the present example there is not any question of the rate of income on the present investments, or the future rate of accumulation, being less than $3 \frac{1}{2}$ per cent., the rate originally assumed in calculating the anmual instalment. The effect of the realisation of part of the security for the loan is that the amount in the sinking fund is suddenly increased by the sum of $£ 4,560$, which was not anticipated when the original annual instalment was calculated. If therefore this amount be paid into the sinking fund and accumulated, and the original instalments continue to be set aside in future and paid into the fund until the end of the 25 th year, the simking fund will at the end of that period he in excess of the amount reguired to repay the loan, and the excess will be the amount of the above sum of $£ 4,560$ accumulated at $: 3 \frac{1}{2}$ per cent., compound interest, for 13 years.

The method of ascertaining the amount by which the original annual instalment may be reduced during the unexpired portion of the repayment period is exactly similar in principle to that adopted in the case of the deficiency of $£ 469 \cdot 744$ in 'hapter XV. In that case the deficiency was converted into terms of original loan and the annual instalment to be set aside during the remaining 13 years to redeem the portion of the loan not already provided for was ascertained.

In the present case the sinking fund stands at the proper calculated amount at the end of the 12 th year: and the original annual instalments, alone, if continned for a further $1: 3$ years, will be amply sufficient to provide for the ultimate repayment of the debt. In addition there is a sum in hand of $£ 4,560$, which may now be applied in reparing part of the loan, and the equivalent annuity for the remainder of the period may be applied in reduction of the future annual instalments to be added to the fund. The $£ 4,560$ may be regarded as a sum which may now be invested in the purchase of an annuity for $1: 3$ years on a $: 3 \frac{1}{2}$ per cent. basis. This method is the more preferable seeing that the $\pm 4,560$ is actually in hand, whereas the deficiency of $£ 46974$ represented the present value of a sum due at a future period and was a definite amount only so far as it represented a sum which should hare been in actual possession, but was not so in fact.

When discussing the adjustment of a sinking fund in the case of a deficiencr in Chapters XV and XTI several alternative methods were pointed out depending upon the period allowed in which to make good past deficiencies. In the case of the surplus under review, there is not any altemative to that already considered if the original date of reparment be adhered to, because the sum in (question is a definite one and is actually in hand. The calculation will be made upon the author's standard form No. 5 , relating to the annuity which ± 1 will purchase. It will be seen that the sum now paid into the fund will effect a decrease in the original annal instalment of $£ 4+6008$ per annum. Calculation (XYII) 1.

The final reparment of the lean by the operation of the amencled instalment during the remaining $1: 3$, rears of the original repayment period is shown in the following Statement XIII. A.

The above method should be carefully compared with the correction of a suplus in a sinking fund, caused by the withdrawal of part of the loan from the operation of the fund owing to the conversion of such part of the loan into ordinary share capital. The difference in the methods will be fully described in ('hapter XVIII.

The Anvela Inchemeat (balane of home) Method. This method will now be used for the purpose of ascertaining the amended annual instalment, based upon the future annual increment, a smmmary of which is given at the beginning of

Chapter XV, and is fully described in Chapters X VI and XXII. As this method is based upon the same actual conditions as the previous example, Statement XYII. A., showing the final repayment of the loan, will also apply. This method is shown in Statement XVII. B.

Comparison of time Metiods of Dealing with a Surplus and a Deficiency in a Sinking Fund.

It is instructive to compare the above results with the example worked out in the case of a deficiency in the fund (Variation I), seeing that both funds relate to loans identical as to amount, period of repayment, and rates per cent. of income and aecumulation.

In each case also the adjustment is made at the end of the 12 th year, and is spread over the full remaining term of 13 years.

In the case of the defieiency in the fund there was an ascertained amount of $£ 469$ itt by which the present investments, $£ 946: 00$, fell short of the amount of $£ 9932 \cdot 744$ which should have been in the fund in order to carry out the original obligation. This deficieney was corrected by setting aside an additional amual instalment, in angmentation of the original annual instalment of $£ 680 \cdot 234$ during the mexpired portion of the repayment period.

This instalment of $£ 45594$, which was found by Calculation (XV) : ; represents the amuity which might have been purehased with the above amount of $£ 469.744$.

The present surplus consists of an actual amount of eash, namely, $£ 4,560$, paid into the fund, which is applied in providing an instalment in reduction of the original annual instalment of $£ 680 \cong 34$. This instalment, as found by Calculation (XVII) 1, based on Table V, is $£ 442 \cdot 601$, and represents the annuity which might be purchased with the above amount of $£ 4,560$ paid into the fund.

In both eases the amount, which should, as shown by Calculation (XV) 2 , have been to the eredit of the fund, is $£ 9932 \cdot \tau 4$, which amount, if accumulated for 13 years at $3 \frac{1}{2}$ per cent., would at the end of the period, as shown by Caleulation (X Y TI) 2 , have amounted to $£ 15534: 375$ of original loan.

In the ease of the surplus eansed by a payment into the fund now under consideration, part of the amount whieh should be in the fund at the end of the prescribed reparment period of 25 years is actually in hand at the end of the 12 th year, and
therefore the future annual instalment must be correspondingly reduced owing to the future accumulation of the sum of $£ 4,560$ paid into the fund．

In the two cases the amount which should hare been to the credit of the fund at the end of the 12 th year was represented as follows：－

> In the case of a Deficiency in the Fund.

	Amount at end of year．	Equivalent amount of loan
Actual amount in the fund ．．．．．．．．．£9463．£14ヶ99「〒1 Defficiency，involving an additional		
	£9932・ヶ44	£155：34：8

In the case of a Surplus in the Fund．

Actual amount in the fund ．．．．．．．．．£9932•「44 £15534：38
Deficiency．Nil．$\quad . \quad \ldots \quad . . \quad$－
$£ 9932 \cdot 744$ £ 1553438

In both cases the amount of original loan to be provided by the accumulation of the future annual instalments for 13 years is the same，namely，$£ 10960 \cdot 62$ ，being the total of the original loan， $\mathfrak{E} \because 6,495$ ，after deducting the above amount of $£ 15534: 38$ already provided for．

The manner in which this remaining portion of original loan is dealt with in the two cases is shown in the following table：－

In the case of a Deficieney in the Fund．

In the case of a Surplus in the Fund.
Cash in hand, being proceeds of security
sold and added to the fund.

$$
\text { Calculation (XTII) } 3 £ 4560.00 \quad £ \div 131 \cdot 64
$$

Future reduced annual instalment of $£ 237 \cdot 633$, to be set aside and accumulated for 13 years at $3 \frac{1}{2}$ per cent. Calculation (XVII) $5 \quad £ 382898$
$£ 10960 \cdot 62$

The above future reduced annual instalment of $£ 29 \% \cdot 633$ is arrived at by deducting from the original annual instalment of $£ 680 \% 34$ the annual instalment of $£ 442 \cdot 601$, which is the future equivalent of the capital sum of $£ 4,560$ paid into the fund.

The above tabulated summary shows the intimate relation between "present value" and "future amount" at the beginning and end of the same period and at the same rate per cent., and further demonstrates the connection between the formulæ.

There are here three expressions of the value of one and the same thing at the same date, namely:-

1. A sum in hand of $£ 4560 \cdot 00$
2. A future annuity for 13 years at $3 \frac{1}{2}$ per cent. of $£ 442.601$
3. A sum due at the end of that time also at $3 \frac{1}{2}$ per cent. £Ћ131.64

A Surplus in the Fund.

Statement XVII. A.
Showing tief final repayment of the loan, by the operation of the sinking fund after making the adjustment in the ammal instalment consequent upon a suplus orer the amount which should stand to the credit of the fund.

Variation II (Surples), arising in consequence of the payment into the fund of the proceeds of sale of part of the assets representing the security for the loan, etc.

Equivalent
amount of
Present investments (at end of 12 th year), $£ 9939 \cdot 74$
Amount thereof, accumulated for $1: 3$ years at $3 \frac{1}{2}$ per ceut. Calculation (NVII) $2 £ 1553438$

Amount paid into the fund $£ 456000$

Amount thereof, accumulated for $1: 5$ yers at
$3 \geq 1$ per cent. Calculation (XVII): £ 213164

Amended annual instalment:

Uriginal instalment reduced by, (I III) 4 ,	$\begin{gathered} \pm 680 \cdot 2: 44 \\ 442 \cdot 601 \end{gathered}$
	$\pm 236 \cdot 683$

Amoment thereof, accumulated for 13 years at 32 per cent. Calculation (XVII) 5 £:38898

Amount of original loan £2649500

A Surplus in the Fund.

Statement XVII. B.

To find the amended annual sinking fund instalment consequent upon a surplus orer the amount which should stand to the credit of the fund.

Variation II (Surplus), arising in consequence of the payment into the fund of the proceeds of sale of part of the assets representing the security for the loan.

Amount of original loan (25 years) $£ 26495 \cdot 00$
deduct amount in the fund at the

$$
\text { end of the } 12 \text { th year } \ldots £ 9939 \cdot 74
$$

proceeds of sale paid into
the fund $£ 4560 \cdot 00$

Balance of loan $\ldots \ldots \quad \ldots$| |
| :---: |
| \ldots |

Amended annual increment to be added to the fund and accumulated at $3 \frac{1}{2}$ per cent. to proride this amount at the end of $1:$, years.

C'alculatiou (XVII) 6 £i44.8i9
deduct income to be received from the present investments, $£ 1449 \Omega \cdot$ 「 4 at $? \frac{1}{2}$ percent. $£ 50 テ \backsim 246$

Amended annual instalment, being :- £237.633
Original annual instalment $£ 680 \mathfrak{2} 34$
reduced by \quad... ... £442.601
$237 \cdot 633$
The rule relating to this method is stated at the head of Chapter XXII.

Pro forma Sinking Fund Account, No. 4.

A Surplus in the Fund. (Variation II.)
Loan of $£ 26,495$, repayable at the end of 25 years.
Showing the final repayment of the loan, by the operation of the reduced annual instalment of $£ 237 \cdot 633$.

Statement XYII. A. Rate of accumulation, $3 \frac{1}{2}$ per cent.

Year.	Amount in the fund at beginning of year.	Income received from investments $3 \geq$ per cent.	$\begin{aligned} & \text { Annnal sa } \\ & \text { sinking fund } \\ & \text { instalment. } \end{aligned}$	eeds of of assets funt.	Amomnt in the fund at end of year.	Year.
1						1
2						2
3						3
4	The amount in the fund at the end of					4
5	the 12 th year, $£ 9932 \cdot 744$, is the correct					5
6	calculated amount, as shown by Calcula-					6
7	tion (XY) 2 , and by the pro forma					7
8	account, Yo. 1, Chapter XV.					S
9						9
10						10
11						11
12				$0 \cdot 000$	$9932 \cdot 74$	12
13	14492.744	$507 \cdot 946$	2376933	-	15237623	13
14	15237.63:	$533 \cdot 317$	$237 \cdot 63:$	-	16008573	14
15	16008573	$560 \cdot 300$	$297 \cdot 633$	-	16806506	15
16	16806.506	588:928	$2: 37 \cdot 633$	-	$176: 32 \cdot 367$	16
17	17632•867	$617 \cdot 133$	297633	-	$1848 \cdot 133$	17
18	$18485 \cdot 133$	$6 \pm 5 \cdot 050$	$237 \cdot 63: 3$	-	$19371 \cdot 816$	18
19	19371.816	658.014		-	$20285 \cdot 463$	19
20	20285463	-10.061	2:37-6:3:\%	-	21235157	20
21	212:35 157	7-4:3030	$2: 36 \cdot 63: \%$	-	29.16020	21
20	22.16 .020	75.561	237.6.93	-	232:31214	22
23	$2: 9231214$	s13•092	$29 \% 693$	-	24281939	23
$\mathfrak{2 4}$	$24281 \cdot 9: 39$	849:868	$237 \cdot 633$	-	25369-440	24
25	$\mathfrak{2} 369 \cdot 440$	$887 \cdot 927$	$297 \cdot 639$	-	$\because 6495000$	25

CHAPTER XVIII.

SINKING FUND PROBLEMS, RELATING TO THE AMOUNT IN THE FUND.

A surplus in the fund, of a commerclal or finaycial undertaking arising ox tie withdrawal of part of the LOAN FROM the operition of the fexd, owing to the contersiox of sucii part of the losy into ordinary share capital or stock of the undertaking.

> Variation III, [whicil the original aneual instalment was foutd by calculation based upon a specified period of repaymext and rate of acctaclation.

> Statement XYIII. A.

Abstract

Variation IV, in which the origival anxeal instalmext ts a stated scm and is vot bised, except in a general way, dpon ayy period of repayment or rate of accumlation. Statement XViII. D.

Scminary of the methods of adjestment. Remaris as to the sinking fund of comamerclal and fichacial cadertakaggs. The anytal increment (baliyce of loan) method. Statement showing the final repaymext of the loh by the operation of tie maended andyal instalment.

Summary of the methods of adjustment.

Tariation III (Surplus), arising on the withelraual of part of the loan from the operation of the simking fund of a commercial or financial undertaking owing to the eonversion of such part of the loan into ordinary share capital or stock of the undertaking:-
in which the original annual instolment was found by calculation bascd upon a specified periol of repayment and rate of accumulation.

Statement ITlII. A.
(1) Ascertain, in the manner described in Chapter NT , whether there is a surplus or a defieiency in the fund apart from the special circumstances now under reviex, and if so, culculate the corrective anmual sinking fund instalment required, by one of the methods there described. Calculations (土T) 3 or (NT^{\top}) 1.
(:) Calculate the annual sinking fund instalmont, which, if set aside for the whole of the unexpired portion of the repayment periot, will proride the purt of the loan converted into ordinary share capital, and thereby withdraun from the operation of the fund.

Calculation (XTIII) 1.
(3) Deduct the annual instalment so ascertained from the original cmmual instalment, and adjust the latter if required, by the above corrective instalment.

Calculation (Nl I) 1.
(t) The remainder will be the future reduced annual instalment, to be set aside and accumulated during the whole of the unexpired portion of the repayment period.

Calculation ($\mathrm{NV} 1 / 1$) 2.
(5) Prepare a statement shoming the final repayment of the loan by the operation of the sinking fand under the amended anditions. Statement Nlill. B.
(6) Prepare a pro forma uccount showing the amount which should be in the fund at the end of each year of the unexpired repayment period. Pro forma Aecount, No. I.

Tarlation IV (Suriets), arising on the withdramol of part of the loan from the operation of the sinking fund of a commercial or funncial undertaking ouing to the conversion of such part of the loan into ondinary share capitat or stock of the malertaking: -
in which the origimal amual instalment is a stated sum, and. is not based, exrept in a general way, upon any period of repayment or rate of aceumulution.

Nitatement XVIII. I).
(1) Asestain from the artual records the ralue of the present investments representing the fund. Aseertain also the rate of income yielded on such calue, and upon this and other comsideratious, as dsembere described, bese the future rate of acrumulation of the fumd.
(2) Ascertain by inspection of Table IIT, the appronimate number of years in which the stated annual instalment will accumulate to the amount of the original loan at the rate of accumulation fixed as in (1). Idopt the ncarest integral number of years so found as the appromimate period of repayment of the original loan, at the rate of aceumulation, ascertained as above.
(3) Calculate the annual sinking fund instalment required to repay the full amount of the loan at the end of the approximate period of repayment found in ($\mathcal{A})$ at the rate of accumulation fixed as in (1).

(4) Calculate the amomet which would be in the fund if the annual instalment ($£ 4411 \cdot 3 \cdot 3)$ so found (.3) had been set aside and accumulated at the rate per rent. fured in (1) from the dute of issue of the loan until the date of conversion of part of the loan.

Calculation (XTIII) 9. £57021:21.
(5) Ascertain the apporent surplus or deficiency in the fund by romparing the value of the present investments representing the fund (1) with the amount foumd in (4).

Surplus, $£ \pm 4 \% \cdot 2 \%$.
(6) C'alculate the corrective instalment, being the annuity which might now be murchased with the amount found in (5), for the umexpired portion of the approximate repayment period ($\mathfrak{\infty}$) at the rate of acrumulation (1).
('alculation (I 「III) 10. $£ 5 \% \cdot 45$.
(7) Calculate the anmual sinking fund instalment which, if set aside for the unexpirad portion of the approximate repayment period (2), momld provide the portion of the loan converted into ordinary share rapital or stock.

Calculation (TV TII) S. £ 1499.59.
[Here refer to the memo. after (1:).]
(8) Deduct from the annual sinking fund instalment $(£ \sim 4+1 \cdot 63)$ found as in (\cdot), but not from the fiacd instalment (£', 500$)$ originally specified in the trust deed and actually set aside, the annual instalment (fty:9.5Q) found in (\%).
(9) The remainder $(£ 3010 \cdot 11)$, after adjust ment in respect of the correctice instalment ($£ 5745)$ found in (6) will be the future reduced unmal sinking fund instalment, to be set aside and accumulated during the whole of the unexpired portion of the approximate repayment period found in (2).
£2954.66.
(10) Prepare a statement showing the final repayment of the loan by the operation of the fund based (not upon the anmual instalment $(£ \gamma, 500)$ originally fixed), but upon the annual instalment (fit416.3) found in (3), as subscquently raluced by the annual instalment (£442952) foumd in (7) and wljusted by the annual instalment ($£ 5 \cdot 45$) found in (6). Statement XVIII. D.
(11) If the ammal instalment $\left(\mathfrak{E}^{\sim} \not 41163\right)$ as found in (3) differs considerably from the annual instalment ($£ 7,500$) originally specificel in the trust deed, an aljustment may be made which will hare the effect of slightly increasing or reducing the ammal instalment found in (9), as hereafter described.
(12) Prepare the pro forma account mentioncd in the previous methods.

I'ro forma Account, To. 6.
Memo. If the above method be used to aljust a surphus in the fund arising in consequence of the payment into the fund of the proceeds of realisation of purt of the assets, "s described in l'ariation II (Surplus) in Chapter XTII, but in which the cmmual instalmont is a stated sum not found by calculation, substitute operation (2) in that method for the above operation (尔), namely:-
(2) C'aleulate the ammity which may be purchased for the unexpited portion of the repayment period with the amount now paid into the fund. Galculation (NTII) 1.

General Remiriss as to the Sinkine: Funds of Commercial and Findictal Taidertainges.

In the case of local anthorities the method hy which loans are required to be repaid by means of a sinking fund is well defined, but in the case of commereial or financial undertakings the conditions are much more variable, and the trust deed may stipulate that it shall be provided either by:-
(1) An equal aunual instalment to be calculated on the basis of a given repayment period and a prescribed rate of aceumulation, similar to those of local authorities, or
(\mathfrak{Z}) A stated sum to be set aside each year.
Both methods must be considered. In order to attract investors a commercial or financial untertaking, when inviting subscriptions for bonds, debentures, debenture stock, or loan capital of any other nature, may give the investor the option at a future date, which may be specified or not, of converting the loan into share capital or stock of the undertaking, on what may then be very advantageous terms if the conceru be making good profits. In the meantime a simking fund is required hey the trust deed to be set aside out of profits in order to repay the total loan on a given date, the fund to aceumulate at a rate per cent., which may be specified or not, by investment in outside securities.

During the earlier years, if profits are low, the provision of the annual instalment will have the effect of reducing the dividends which may be paid to the ordinary shareholders, and there will not therefore be any inducement to the loan creditors to give up their seeurity. But a time may come when the position of the undertaking has been materially improved, and if the profits have been good and are likely to continue so, some of the loan creditors may be induced to convert their holding into ordinary share capital or stock. The amount of loan so converted will, of course, correspondingly reduce the amount to be finally provided by means of the sinking fund, and, seeing that the period of repayment of the balance of the loan will remain unchanged, the effect of the partial conversion will be seen solely in a reluction in the future amual instahment to be set aside out of profits during the unexpired portion of the original repayment period. This remuction in the future annual instalment arises in consequence of two factors, namely, the amount of loan withdrawn from the operation of the fund by reason of its conversion into ordinary share capital or stock: and, further, from the fact that the amount now in the fund represents the accumulation of past instalments set aside to provide the whole of the loan. Stated in terms of the balance of loan still unconverted, there is a present surphus in the fund due to setting aside in the past what will in future be excessive annual instalments, and there is also an excessive future annual instalment, both of which factors have been dealt with individually in previous chapters. They are here combined: and the problem is further complieated by the nature of the
annual instalment. If it be a stated sum, it is very probable that it was fixed originally with only an approximate regard to the period of reparment, and it is therefore necessary to ascertain not only the future period of repayment but also the future rate of accumulation. This future rate of accumulation may he based upon the rate of income now yielded by the present investments of the fund, and therefrom it is possible to calculate the period of repayment, both of which are governing factors in the adjustment to be made. The problem may be further complicated by other rariations in the period or rate per cent., or by a combination of both, but attention will be directed only to the above factors.

Yariation III (Surples), arising on the withdrawal of part of the loan from the operation of the sinking fund of a commercial or financial undertaking owing to the conversion of such part of the loan into ordinary share capital or stock of the undertaking: -
in which the original anmul instalment was fouml by celculution, based "pon " specified period of repayment and rate of accumulation.
statement IVIII. A.
The above variation will be illustrated by the information previously obtained with regard to the imaginary sinking fund already discussed, namely, the same amount of original loan, $£ 26,495$, repayment period 2^{5} years, rate of accumulation $3 \frac{1}{2}$ per cent., amount in the fund $£ 9,463$, or a deficience of $£ 469 \% 4$. The assumed conversion of part of the loan takes place at the end of the 12 th year and afferts $£ 5,000$ of the loan. The original annual instalment, $£ 680 \cdots ?$, was arived at by Calculation (XV^{-}) 1.

Statement XVIII, A, following, shows the successive steps in the adjustment of the ammal instalment, and Statement XVILI, B, shows the ultimate reparment of the loan by the operation of the fund after making such adjustment.

The above deficiency of $£ 46974$ has been purposely introduced into this example in wrder to demonstrate that the method adopted will apply to a combination of factors requiring the adjustment. It will illustrate the remark made in a previous chapter that it is mot abolutely necessary to ascertain the cxact amome of the defferency at the time of making the adjustment sereing that the mateulation is hased upon the actual amount now in the fund and the accmunation thereof at the
future sate per cent. This is clearly shown by the examples worked out in this and other chapters by the annal increment (balance of loan) method in which no mention is made, or account taken, of any surplus or deficiency in the amount in the fund as compared with the amount which should be in the fund at the time of making the adjustment.

The reduction of $£ 310: 308$ in the original annmal instalment is the sole effect of the with hawal of the $£ 5,000$ of loan from the operation of the fund, since there is not in this instance any increase in the income to be added to the fund, as found in Chapter XVII was the effect of the parment into the fund of the sum of $£ 4,560$ arising out of the proceeds of sale of part of the security for the loan. See Statement XVII. A.

This method of adjusting a surplus in a sinking fund, owing to the withdrawal of part of the loan from the operation of the fund, should therefore be carefully compared with the methorl found necessary in the case of a surplus arising from a cash payment into the fund from proceeds of assets realised. This will be fully considered at the end of this chapter.

The Axyeal Increment (babivce of loay) Method. The method of arriving at the amenderl ammal instalment based upon the future anmual increment is summarised at the begiming of Chapter XV, and is fully described in Chapter XVI. As the method about to be discussed is based upon the same conditions as in the previons example. Statement XVIII. B., showing the final repayment of the loan will again apply. This method is shown in statement XIIII. ('. following.

A Surplus in the Fund.
Statement XVIII. A.

The Deductive Method.

Showing the method of adjusting the annual instalment in consequence of a surplus in the fund, arising on the withdrawal of part of the loan from the operation of the fund owing to the conversion of such part of the loan into ordinary share capital or stock.

Variation III (Scrples), in which the original annual instalment was found by calculation, based upon a specified period of reparment and rate of accumulation.

Calculation (XV) 1.

Amended annual instalment of $£ 415520$
will provide $£ 6695 \cdots 9$ in $1: 3$ years
at $3 \underline{2}$ per cent. ('alculation (XVIII) $\because \pm 415520 \quad £ 6695 \cdot 29$

A Surplus in the Fund.

Statement XVIII. B.
Showing the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the annual instalment consequent upou a surplus in the fund, arising on the withdrawal of part of the loan from the operation of the fund owing to the conversion of such part of the loan into ordinary share capital or stock.

Yardation III (Surples), in which the original annual instalment was found by calculation, based upon a specified period of repayment and rate of accumulation. Calculation (XV) 1.

	$\begin{gathered} \text { Annual } \\ \text { instalment } \end{gathered}$	$\begin{gathered} \text { Equivalent } \\ \text { amount } \\ \text { of original loan. } \end{gathered}$
Present investments (at end of 12th year)		
$£ 9463.00$		
Amount thereof, accumulated for 13 years at $3 \frac{1}{2}$ per rent.		
Calculation ($\mathrm{XV}^{\text {) }} 4$		£14\%99•1

Amended annual instalment:-

Original annual instalment £680.234
Additional anumal instalment to provide the present deficiency of $£ 469 \% 44 . \quad$ Calculation (XV I) $1 \quad £ 45.594$
£205.828
Reduced annual instalment due to withdrawal of $£ 5,000$ of loan.

Calculation (XVIII) $1 £ 310.308$
$£ 415520$
Amount thereof, in 13 years at $3 \frac{1}{2}$ per cent. Calculation (XVIII) $2 £ 6695 \cdot 29$

Amount in the fund at the end of 25 years $£ 2149500$
being amount of original loan ... £26495.00
less the amount converted as above $£ 5000 \cdot 00$

A Surplus in the Fund．
The Annual Increment（balance of loan）Method．
To find the amended annual sinking fund instalment consequent upon a surphus in the fund，arising on the withdrawal of part of the loan from the operation of the fund，owing to the conversion of such part of the loan into ordinary share capital or stock．

Tabiation III（Surplus），in which the original ammal instal－ ment was found by calculation，hased upon a specified period of repayment and rate of accumulation．

Calculation（XV） 1.
Amount of original loan（25）years）．．．．．．．．．．．．$£^{2} 2649500$
deduct portion thereof converted into ordinary share capital or stock and withdrawn from the operation of the fund at the end of the 12th year ．．．．．．．．．．．．
$£ 5000 \cdot 00$
£2 $1495 \cdot 00$
deduct amount in the fund at the end of the 1थth year ．．．．．．．．．．．．．．．．．．$£ 946: 00$

Balance of loan ．．．．．．．．．．．．$£ 1 \supseteq 0 \cdot 9.00$
Amended annual increment to be added to the
fiund，and accumulated at $3 \frac{1}{2}$ per cent．to provide this amount at the end of 13 years Calculation（XVIII）： む「46．725
deduct income to be received from the present investments（ $£ 9,46: 3$ ）at $3 \frac{1}{2}$ per cent． £：31•205

Amended annual instalment，being ．．．．．．．．．£415：5：0
Original annual instahment ．．．．．．£650ㅃ․）t
increased by ．．．．．．．．．$£ 45.594$
むこのタ゚8
and reduced by ．．．．．．．．．£：30：308
$£ 415 \cdot 520$

The rule relating to this method is stated at the head of Chapter XXIL．

Pro forma Sinking Fund Account, No. 5.

A Surplus in the Fund. (Variation III.)
Loan of $£ 26,495$, repayable at the end of 25 years.
Showing tife final rephyment of the loan, by the operation of the reduced annual instalment of $£ 415520$.

Statement XVIII. B. Rate of accumulation, $3 \frac{1}{2}$ per cent.

Year.	Amount in the fund at beginning of year.	$\begin{aligned} & \text { Income } \\ & \text { received from } \\ & \text { invetments } \\ & 3 \frac{1}{2} \text { per cent. } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { sinkiny fund } \\ \text { instalment. } \end{gathered}$	Amount in at end of year.	Year.
1					1
2					2
3					3
4	The amount in the fund at the end of the				4
5	12 th year, $£ 9,46 \%$, is an assumed amount,				5
6					6
\%	annual instalment of $£ 648.064$, as shown				\%
8	by Calculation (XII) 10, instead of the				8
9	correct annual instahment of $£ 6802$? 4 .				9
10					10
11					11
12				9463.000	12
13	$9463 \cdot 000$	$391 \cdot 205$	415520	10209 -25	13
14	10209-225	$355 \cdot 940$	415590	10982:585	14
15	10982:585	384390	415.520	11782.495	15
16	$11782 \cdot 495$	$412 \cdot 385$	415520	$12610 \cdot 402$	16
17	$12610 \cdot 402$	441364	415520	$18467 \cdot 286$	17
18	$13467 \cdot 286$	+71:355	415520	$14: 354 \cdot 161$	18
19	$1435+161$	5023996	+15920	$15922 \cdot 074$	19
20	15252007	$5: 4.593$	415520	$1622 \cdot 120$	20
21	16222 120	$56 \% \cdot 574$	415.520	17205414	21
22	17205.414	$602 \cdot 189$	415%	18293123	22
23	18293123	$637 \cdot 809$	415920	19276452	23
24	19276452	$674 \cdot 6 r 6$	+15520	20366.648	24
25	$20366 \cdot 648$	712889	415:5?0	21495000	25

Variation IV. (Surples), arising on the withdrawal of part of the loan from the operation of the sinking fund of a commercial or financial undertaking owing to the conversion of such part of the loan into ordinary share capital or stock of the undertaking: -
in which the original anmual instalmont is a stated sum and is not based cacept in a gencral way upon any period of repayment or rate of accumulation.

Statement XVIII. D.
This variation is similar in principle to the one last discussed, but requires different treatment owing to the fact that the original annual instalment is a stated sum arrived at in a somewhat empirical manner, without any calculation similar to (XV) 1, which is based upon a prescribed period of repayment and rate of accumulation. In the following example, used to illustrate the variation under review new data have been adopted, and the question is dealt with solely as regards the loan debt of commercial or financial undertakings without making any comparison with the methods to be adopted in the ease of a local authority. In the early days of municipal finance the anmual instalment to be set aside was often a fixed amount, being generally a definite percentage of the amount of the loan, but the conditions then imposed upon such authorities were rague and indefinite both as regards the accumulation of the fund and the gradual reparment of the debt, and left entirely out of account the life or duration of utility of the asset created out of the loan.

Example to Ielustrate Mariation IV (Surplus). The sinking fund under review relates to the repayment of a loan of $£ 150,000$, and an anmual instalment of $£ \sim, 500$ is required to be set aside for this purpose out of the profits of the undertaking and invested in outside securities. I nder the trust deed the loan creditors have the option of converting their holding into ordinary share capital or stock at any time within seven years from the date of issue. The price payable, on conversion, for the ordinary share capital is immaterial for the present purpose, as is also the rate of interest payable upon the loan; but any premium payable to the loan-holders upon conversion or redemption should be taken into account. At the end of the seventh year the holders of $£ 45,000$ of loan elect to exereise the above option, and convert their loan holding into ordinary share capital or stock. Seeing that no specified period is
prescribed within which the loan shall be repaid by means of the sinking fund and that the annual sum to be set aside is fixed at $£ 7,500$, there was not any necessity, at the date of issue of the loan, to make any calculation of the amual instalment as in the ease of the sinking funds of local authorities. This anuual instalment of $£ 7,500$, it will be assumed, has been regularly set aside and invested earh year, and at the end of the serenth rear, when $£ 45,000$ of original loan is converted into ordinary share capital or stock, it will have amounted to $£ 5746848$, having carned an average aceumulation rate of 3 per cent., as shown by Calculation (XVIII) 4. In actual practice, of course, this amount would be obtained from the actual records or books of account.

The position at the end of the serenth year will therefore be as follows:-

This anuual instalment will be reduced in future years owing to the withdrawal of $£ 45,000$ of loan from the operation of the fund.

The next step in the adjustment is to ascertain the annual amount by which this instalment may be reduced and yet fulfil the original obligation to repay the uneonverted portion of the loan under the original conditions. There are several ways of doing this, as may be gathered from previous examples. But it is in any case first essential that the estimated future rate of accumulation shall be fixed. In this case past experience is arailable, and, for convenience, 3 per cent. will be taken, being the rate of income ahready yielded by the present investments representing the fund. Any variation in this rate per cent. and in the future accumulation rate may be treated as explained in Chapter XXI (variation in the rates per cent.). Having decided upon the future estimated rate of accumulation, it is next necessary to fix the period of redemption in order to ascertain the reduction in the anmual instahment of $£ 5,500$. This would not be necessary but for the amount at present in the fund. The instalment then would be $105 / 150$ ths of the original instalment of $£ 7,500$, or $£ 5,250$ per annum, but this
will be reduced by an annual amount depending upon the moner now in the fund. There are therefore two factors to be taken into arcount-(1) the accumulation of the $£ 5 \div 468.48$ now in the fund, and (2) the accumulation of the future reduced annual instalment which it is required to ascertain. It is not possible to combine, in one calculation, factors involving the amount of $£ 1$, and also of $£ 1$ per annum without reducing both to a common denomination, and therefore it is better as the simplest method to revert to the original conditions at the date of the issue of the loan.

The first step is to ascertain the approximate number of years in which an annual instalment of $£$ £, 500 will amount to, and repar, a loan of, $£ 150,000$ if accumulated at 3 per cent. per annum. This is the rate of income which has been yielded by the present investments representing the fund and which it is assumed will continue to be vielded by any future inrestments. The number of years mar be ascertained approximately by an inspection of Table III, seeing that if $£\{.500$ per annum will, at 3 per cent., amount to $£ 150,000$, $£ 1$ per annum will, at the same rate and in the same time, amount to $£ 20$. Table III gives the following figures:-
$£ 1$ per annum will, at 3 per cent., amount to-
in 15 years \ldots
\ldots
\ldots
in 16 years \ldots
\ldots
\ldots
y $1 r$
in $1 r$
years \ldots
$\ldots$$\ldots$
and an even 16 years is therefore adopted as the approximate period of repayment, which will be slightly in excess of the actual period required, and the calculated annual instalment will therefore be less than $£ 5,500$. In order to make the calculation in such a manner that the result may be proved as in other cases, it is necessary to first ascertain the exact ammal instalment, to be accumulated at? per cent., to repay $£ 150,000$ in exactly 16 years. The annual instalment is $£ \dot{i} 441 \cdot 63$, as shown by C'alculation (XVIII) 5 .

This annual instalment of $£$| |
| ---: | :--- | 4163 is less than the stated annual instalment of $£ 5.500$, as will be gathered from the above extracts from Table III, which show that $£ 1$ per annum will in 16 years, at ? per cent., amount to $£ 20 \cdot 15688$: consequently the preseribed annual instalment of $£ \begin{gathered}5 \\ , 000 \\ \text { will amount to :- }\end{gathered}$

$$
(£ 20 \cdot 15688 \times £ 7,500) \text { or to } £ 151,17659
$$

in 16 years at 3 per cent., as shown by Calculation (XVIII) 6 .

Expressed in terms of the above difference it will be seen that:
 will in 16 years, at 3 per cent., amount to $£ 151,176: 59-£ 150,000$ or $£ 1176 \cdot 58$ as shown by Calculation (X YIII) 7 .

By adopting the above ammal instalment of $£ 5441 \cdot(6: 3$ instead of $£ \begin{gathered} \\ 5 \\ 500 \\ \text {, an intentional error of } £ 55 \cdot 37 \\ \text { per ann } \\ \text { an }\end{gathered}$ introduced, relating to the repayment of a loan of $£ 150,000$ in 16 years. But the reduced annual instalment which is required, and which will be based upon the above annual instalment of
 only. This intentional error may be corrected if thought desirable or required in the manner to be afterwards explained.

The following data have now beell ascertained:- A loan of $£ 105,000$ is repayable in a period of 9 years, and towards this there is in the fund an amount of $£ 5746848$, which, it is estimated, will accumulate at $: 3$ per cent. There is an annual instalment of $\pm 4+4 \cdot 6: 3$ to be set aside for 9 years, and an intentional error of $£ 58: 37$ per amum has been introduced into the problem.

It is required to find the annual amount by which the above instalment of \pm it4 $1 \cdot 63$ may be reduced, consequent upon the withdrawal of $£ 45,000$ of loan from the operation of the fund.

The problem differs somewhat from the sumplus of $\mathfrak{x} 4,560$, already considered iu Chapter XVH (statement XVII. A.). In that case the $\pm 4,560$ was paid into the fund in consequence of the realisation of assets forming part of the security for the loan, and was applied in repaying part of the loan or remained to swell the assets of the fund.

In the present instance the conversion of $£ 45,000$ of luan into share capital or stock may be looked upon as an entirely separate transaction, and may be regarded as so much cash received in consequence of the issue of new share capital, and applied in reduction of the loan debt. The undertaking, except as afterwards mentioned, does not derive any benefit from the substitution of its obligation to the new shareholders for its obligation to the previons loanholders. Indeed, it may happen that the inducement to the loanholders to convert their secured debt into ordinary share capital or stock is the expectation of a higher rate of interest upon their investment. The only bencfit to the undertaking is that the capital is firmly invested in the concern; and the saving in the sinking fund instalment, if previously taken out of profits, will help to provide any increased return payable by way of dividend to the
original lomholders in respect of the loan capital so converted． It is here necessary to depart from the method adopted in dealing with the sum of $\pm \pm, 560$ paid into the fund in the example considered in Chapter XVI．The $\mathfrak{x t , 5 6 0}$ was an amount actually in hand，and Caleulation（XIII） 1 shows the method of finding the future annuity which it would purchase． The $\pm 45,000$ in the present case，on the contrary，is an amount due at a future time，namely，at the end of the sinking fund period，and the problem theretore becomes inverted，and instead of calculating the annuity which $£ 45,000$ will purchase，it is required to ascertain the annuity or annual sinking fund instalment which in the remaining unexpired period of 9 years will amount to that sum．This is shown by Calculation （ XIIII）8，which may be usefully compared with Calculation （XVII）1．The annual instalment so found is $\pm 4+2952$ ，by which amount the original annual instalment of ざT 44163 may be reduced，making the amended anmal instalment $\pm: 301 \approx 11$ ．

There is，however，a further slight correction to be made． In order to simplify the ealeulation an even period of 16 years has been adopted，which is in excess of the actual period of reparment and requires a reduced annual instalment of $\pm \begin{array}{ll}+1 \cdot 6 ; 3 & \text { instead of } \pm 5,500 \text { ．Until the conversion of part of }\end{array}$ the loan into ordinary share capital or stock，the undertaking had been setting aside an annual instalment of $£ 5,500$ ，so that there is now an apparent surplus in the amome in the funt as compared with what would have been in the fund if $£ 54+1 \cdot 6: 3$ only had been amually set aside．To ascertain the amount of th is surplus it is requisite to ascertain the amount to which an annual instalment of $£ 5+41 \cdot 63$ will aceumulate in i years at 3 per cent． This，as shown by Calculation（XYII）9，is．．．．．．£5i02191 and on comparing this sum with the amount actually in the fund，being the aceumulation of the stated instalment of む゙T，500

Calculation（XIIII）4，viz．：£5「468．48
the apparent present surplus is found to be $£ 44 \because \cdot \boldsymbol{i}$
which amount，being now in the fund，will acemmulate for 9）years at ：＂per rent．，and is the present value of an ammity．
 applied in further reduetion of the ammal instalment of ETJflece：in the same way that the ammal instalment of
 Chapter XVII，statement XVII，A．

In the event of the calculated instalment found as above exceeding the prescribed instalment of $£ \sim, 500$ there would be an apparent deficiency in the fund, instead of a surplus, which would alter the method, but not the principle, of the minor adjustment under consideration.

The various stages of the adjustment have already been so fully described that it is not requisite to prepare a statement similar to XVIII, A, in the previous example.

A statement has, however, been prepared, similar to XVIII, B, showing the final repayment of the loan by the operation of the fund after making the above adjustment in the annual instalment. See Statement XVIII, D, and the pro forma account No. 6 following.

Correction of tie Intentional Error. There now only remains the correction of the above intentional error of $£ 58: 37$ in taking the anmual instalment at the calculated amount of $£ 7441 \cdot 6$: instead of $£ 7,500$, which lengthened the period of repayment by part of a year.

The $£ 7,500$, or any other similarly prescribed annual instalment, is generally fixed in an empirical manner with only a rough approximation to the actual requirements hased upon the conditions in each case. It may therefore be concluded that the instalment aseertained in the above manner will meet any practical need likely to arise in such a case. If, however, there is at any time a necessity for greater accuracy it may be ascertained, approximately, by the following method:The intentional annual error introduced was £58.37

This caused an apparent surplus in \mathfrak{r} years of \ldots	£44\% 27
Equal to an annual instalment spread over 9 years of	$£ 57 \cdot 45$
This error related to a loan of	£150,000
The correction will relate to a loan of only	$£ 105,000$
Therefore the correction may be taken as ${ }^{105} / 150$ ths of $£ 57 \cdot 45$, or	$£ 40 \sim 15$

which would in 9 years amount, at 3 per cent., to
Calculation (XVIII) 13 $£ 408.549$
The present value of this annual sum in 9 years, at
3 per cent., is Calculation (XVIII) 14 £313.118
and the correction may be made by increasing each of the reduced annual instalments of $£ 9954 \cdot 66$ by $£ 40 \cdot 215$, or by paying into the fund at the present time the above present value thereof, namely, $£: 313 \cdot 118$. If no such correction be made, only $£ 408549$ of original loan will remain unprovided for at the end of the period (which is slightly less than 16 years) in which the original instalment of $£ 5,500$ would have repaid the loan.

The Arxial Inchement (balince of lomy) Method. The method of arriving at the amended ammal instalment based upon the future annual increment is summarised at the beginning of Chapter XV , and is fully described in Chapter AVI. As the method about to be discussed is based upon the same data as in the example previously used, the following statement XVIII, D, showing the final repayment of the loan will still apply. For the reasons already given the calculation cannot be made in terms of the stated instalment, but must le made in terms of the approximate amount of $£ 2441 \cdot 63$ found by Calculation (XYIII) 5. This method is shown in Statement X YIII, E, following.

A Surplus in the Fund.

Statement XVIII. D.
Showing the final rephyment of the loan, by the operation of the sinking fund, after making the adjustment in the annual instalment, consequent upon a surplus in the fund, arising on the withlrawal of part of the loan from the operation of the fund owing to the conversion of such part of the loan into ordinary share capital or stock.

Varmation IV (Nurples), in which the original annual instalment is a stated sum, and is not based, except in a general way, umon any period of repayment or rate of aceumulation.
Annual

instalment. | Equivalent |
| :---: |
| amount of |
| original loan. |

Present investments (at cond of i years), Calculation (NVID) +55.46848

Amomet therenf, aremmulated for
9 years at :" per cont.
(Galculation (XV11I) 11
£っ498:3:30

Amended annual instalment:-

Uriginal annual instalment, as provided by trust deed $\underset{\text { £5 } 500 \cdot 00}{ }$

Substituted annual instalment as adopted in Calculation (XVIII) 5, based upon a rate of accumulation of 3 per cent. and a repayment period of 16 years £i $441 \cdot 63$
This will be reduced by the annual instalment required to repay the $£ 45,000$ of loan withdrawn, in 9 years at $: 3$ per cent.

Calculation ($\mathrm{N} \backslash I \mathrm{II}$) 8 ± 4429.52
$£ 301 \approx 11$
And will be further reduced loy the ammal instalment to provide $\pm 4 \pm \sim \sim \pi$, being the surplus which will be in the fund at the end of 16 years, due to taking an even period of 16 years.

Calculation (XYIII) $10 \quad \pm 55 \cdot 45$
£2954•66

Amount thereof, accumulated for
9 years at 3 per cent.
Calculation (XVIII) 12 £:30016.70

Amount in the fund, at the end of 16 years $£ 105000 \cdot 00$
being the original loan $\ldots . \ldots . £ 150000 \cdot 00$
reduced by the amown of
loan withdrawn from the
operation of the fund ... $\xlongequal{£ 45000 \cdot 00} £(105000 \cdot 00$

This statement shows the methond of making the correction in the amual instalment, and also the final repayment of the loan. The amended annual instalment may also be found by the amual increment (balance of loan) method, as shown in Statement XVIII. E.

A Surplus in the Fund.

The Annual Increment (balance of loan) Method.

To find the amended amual sinking fund instalment, consequent upon a surplus in the fund, arising on the withdrawal of part of the loan from the operation of the fund owing to the conversion of such part of the loan into ordinary share capital or stock.

Carmtion I^{\prime} (scrples), in whith the original anmal instalment is a stated sum, and is not based, except in a general way, upon any period of repayment or rate of accumulation.

Amount of original loan (16 years) £150000.00
deduct portion thereof converted into ordinary share capital and with operation of the fund at the end of the ith year... £45000.00
$£ 105000 \cdot 00$
deduct amome in the fund at the end of the

Balance of loan £4i5:3152

Amended annual increment to be added to the fund, and accumulated at? per rent. to provide this amount at the end of 9 years

Calculation (X\III) $15 \quad £ 4678 \cdot 71$
deduct income to be received from the present investments ($£ 5 \mathrm{r} 46848$) at ${ }^{3}$ per cent. $£ 1724.05$

Amended annual instalment, bring:-
£゚954•66
Calculated instalmest £ั 441 ($6: 3$
redued by £418694
$\pm: 954 \cdot 66$

The final reperment of the loan be the operation of the sinking fumd, after making the above aljustment in the annual instament is shown in statement XVIII. D.

Pro forma Sinking Fund Account, No. 6.

A surplus in the Fund. (Variation IV.)
Loan of $\mathrm{E} 15(1), 010)$, repayable ly a stated ammal instalment of £' ', 50%.

Showing the finha rephyment of the balance of mononerted loan, by the operation of the reduced annual instalment of £2954-660.

Statement XVIII. D. Rate of aceumulation, '3 per cent.

Year.	$\begin{aligned} & \text { Amount in } \\ & \text { the fund } \\ & \text { at beginning } \\ & \text { of year. } \end{aligned}$	lncome received from investments investments is per cent.	$\begin{gathered} \text { Annual } \\ \text { sinking fund } \\ \text { instalnent. } \end{gathered}$	Amount in the fund at end of year	Year.
1	Nil	Nil	5500.000	$7500 \cdot 000$	1
$\mathfrak{2}$	$7500 \cdot 000$	295.000	55010.1000	15205.000	2
:	15525.000	4505050	550000000	$2: 181.750$	3
4	$2: 3181.750$	$695 \cdot 45 \%$	5.500.0000	31:37\% 203	4
5	313T500	$941 \% 36$	$5500 \cdot 000$	89818.519	5
6	39818.519	$119+556$	5.500.000	48513075	6
T	485130055	$1455 \cdot 495$	$5500 \cdot 0000$	$57468 \cdot 480$	\%
8	$57468 \cdot 480$	1204.054	$295+660$	(20 14\%194	8
9	6214\% 194	$186+416$	$29.5+1660$	66960\% 270	9
10	669966-2\%	2008983	2954.660	71929918	10
11	71929918	2157898	29.54660	57042476	11
12	5r0t2 4 \% 6	2:311:274	29.54660	82:308410	12
13	82:308410	$2469 \cdot 52$	$2954 \cdot 660$	87532322	13
14	87532322	2631970	2954660	93318952	14
15	933318-952	2799.569	$2954 \cdot 660$	99073181	15
16	99073181	2972.159	$2954 \cdot 660$	$105000 \cdot 000$	16
Amomet of loan converted				$45000 \cdot 000$	

Comparison of Methods Previocsly Disctssed. This concludes the examination of the various methods of adjusting a sinking fund to compensate for a difference between the actual amount in the fund and the amount which should be in the fund at any time in order to carry out the original obligation ; and the results may be summarised as follows.

In the case of the adjustment (Variation I) caused by a deficiency in the fund, as shown by Statement ITI, A, in Chapter XVI, the deficiency was corrected by an additional sinking fund instalment to be set aside during the whole of the unexpired portion of the repayment period, as shown by Calculation (XVI) 1.

In Variation II, deseribed in Chapter XYII, Statement IVII, A, relating to a surplus of $£ 4,560$, being the proceeds of sale of assets, paid into the fund, a different method was adopted. In that case there was an actual increase in the cash assets of the fund which operated in two ways, (1) by increasing the future income of the fund, in consequence of which the present sum of $£ 4,560$ will ultimately repay, by aceumulation, $£ \begin{aligned} & \\ & \$ 13164\end{aligned}$ of original loan, and (2) by reducing the amount of loan ultimately repayable by \pm| |
| :--- | :--- | :--- |
| 1 |
| 64 | , it relieved the future years of the amount of the sinking fund instalment ($£ 44260$) equivalent to that amount for the mexpired portion of the reparment period of $1: 3$ years, which is the annuity which might now be purchased with the sum of $£ 4,560$. In the two Variations III and IV which have just been considered there is a surplus in the fund caused by the withdrawal of part of the loan from the operation of the fund. There is here no actual addition to the assets of the fund, as in the case of the payment into the fund of the proceeds of sale of part of the security for the loan. The surplus may in effect be considered as a lightening of the burden previously borne by the undertaking measured by the reduction in the amomnt of loan to be ultimately provided. Consequently the surplus operates in one direction only, namely, by reducing the original annual instalment to be set aside, whether that instalment was arrived at by calculation in the ordinary manner or was a round sum specified in the trust or other deed under which the fund was instituted.

Fermimer Problems. There are other problems which may arise in connection with the sinking funds of commereial or financial undertakings, but which have not been treated in an exhastive mamer, hecause they mar be solved be one or other of the methods elsewhere deseribed. They are as follows:-

Rememptos by Drawings:

If anmual, theer may be comsitered on the lines of the instalment method of local anthorities. (Chapter XI.)

If at periods of years, a sinking fund may be set aside during each period to provide the proportion of the loan repayable at the end of each periorl.

If at periods of years, in a series, a sinking fund may be provided by setting aside and accumulating equal annual amounts during the whole period in order to provide the amounts repayable at the end of each period. This will apply to the simultaneous provision out of profits of loans repayable in certain priorities.

Redemption of Lons (Issued is Stock) at a Premium:
If the premium be stated, the sinking fund instalment should be calculated to provide that amount in addition to the par value, and there is not any change in the method described.
If the premium depends upon the price at the date of redemption, and camot be accurately estimated, the amual instalment should be hased upon the par value of the stock, and the premium provided for, as and when it arises, by charging it to revenue account, or by making prudent provision in anticipation.

Redemption of Loan in Part.

The trust deed may provide that if any part of the loan be redeemed out of the fund, the interest previously paid upon such redeemed loan shall be added to the fund, although the rate of interest payable to the loanholder be higher than the calculated rate of aceumulation of the fund. This will cause a surplus in the fund over the calculated amount, which will have the effect of anticipating the fimal maturity of the fund, whether the loan is repayable on a specified date or by the accumulation of a stated instalment. The possibility of making any provision for such an event when calculating the original instalment in the case of an ordinary sinking fund will depend upon the circumstances of each individual case.

Cessation of Anvual Coxtribetions. Instead of making the adjustment by spreading any surplus, however arising, equally orer the unexpired portion of the repayment period, it may be provided that the amount in the fund shall continue to accumulate, and the original instalments be annually paid in, until such time as the fund is of such an amount that the
present investments and the accumulations of the annual income to be received therefrom in future will be sufficient, without any further instalments, to provide the amount of loan reparable. (See Article 11 (2) County Stock Regulations, 1891.)

Contincation of Instalaments. It may be provided that the original instalment shall continue to be set aside and added to the fund until the loan is ultimately repaid, notwithstanding :
(1) The withdrawal of any part of the loan from the operation of the sinking fumd by reason of its being converted into ordinary share capital or stock.
(2) The sale of any part of the assets forming part of the security for the loan, and the payment of the proceeds into the fund.
(3) Any other cause operating to produce a surplus in the fund or to accelerate the date of maturity of the fund.

In such cases it may be necessary to determine the reduced period of redemption which may be ascertained by one or other of the methods described.

CLIAPTER XIX.

Sinking fund problems, RELAT'ING TO
 the rate per cent.,

OF INCOME UPON TILE PRESENT INVESTMENTS REPRESENTING TIIE AMOUNT IN TIIE FUND ; AND ALSO THE FUTURE RATE OF ACCUMULATION OF TIIE FUND.

Tariation A, in which There is a variation in tile RATE OF ACCUMULATION WITIOUT ANY VARIATION IN TJEE RATE OF INCOME UPON TILE PRESENT INVESTMENTS, OR IN THE PERIOD OF REPAYMENT.

Statement XIX. B.
Summary of the metiods of adjustment. General conSIDERATIONS AS TO VARIATIONS IN TIE RATE PER CENT. TO BE TREATED IN DETALL IN TIE FOLIOWING CHAPTERS. 'VIE DEDUCTIVE METIOD. STATEMENT SIIOWING TIIE FINAL REPAYMENT OF THE LOAN BY TIIE OPERATION OF THE AMENDED ANNUAL INSTALMENT.

Summary of the methods of adjustment.

(I) The deductive method, as summurised below, is of wider application than the rariation in the rate of acrumulation only, and has been so morded that it may be treated as the stamlard method relating to all variations. Statement $\mathrm{XIX} . A$.
(II) The direct method, without calculation, as summarised at the head of Chapter XX, will not apply to this cariation.
(III) The anmual increment (balance of loan) method, as summarised at the heud of Chapter X.XII, may be used, but will not be applied to the extumple wader revieu. The method of fuding the amended anmul increment is shown in Calculation $(\mathrm{N} / \mathrm{S}) 5$.
(IV) The annual increment (ratio) method, as summurised at the heal of Chapter XXIII. Statement XXII.C.

Note. The terms used in the following summary are fully erplained at the head of chapter X.YII. In all the abore methods, it is imperative that the rate of accumulation and of income from investments be uniform during the whole of the unexpired or substituted portion of the repuyment period.

Summary of the deductive method, of ascertaining the amended annual sinking fund instalment due to a rariation in the rate per cont. of accumulation, accompanied by, or without, any variation in the rate of income to be reccived upon the present investments representing the fumd, and also tue to any variation in the period of repayment, or any combination of the above factors.

Statement XIX. A.
(1) Ascertain the ralue of the present inrestments in the manner already described, and "lso the amount of the present annual income yielded l!y such investments, up to the time of making the adjustment.
(2) To the present annual income, so ascertained, add the present or original annual instalment which has been set aside and added to the simking fund up to the time of making the adjustment.
(3) The total so obtained is the present anmual increment of the fund.
(4) Aseertain, or estimate, the rate per cent. at which the fund will accumulate in future (the future rate).
(5) Calculate (in one sum or separately) the amount of the present anmual increment found, as in (3), for the number of years in the unerpired or substituted period of repayment, at the future rate of accumulation fixed in (4).

Caleulations (N / X) 1 and 2.
(6) The amount or amounts, so aseertainct, will represent the portion of origimal loan which will be protided at the end of the original or varied period of repayment.
(7) To this amount add the ralue of the present investments, as assertained in (1), amd dedurt the sum from the amonent of the original loan.
(8) The remainder represents the pertion of original loan which is now unprorided for by the present inrestments and the future arcomulation of the present anmul increment foumd in (3).
(9) C'alculate the additional anmual sinking fund instalment which, at the future rate of accumulation, estimated as in (1), will amount to the balanee of loen found in (S) at the end of the unerpired or substituted period of repayment. Calculation (XIX) 3.
(10) This additional amnual instalment, added to the present annual increment found in (3) gives the same futwre or amended annual incremont, which is fomd by dirert calculation by the ammal increment (ratio) methont.
(11) From the future, or amended ammal increment, so ascertained, deduct the futwre anmul income from the present investments: and the remainder is the futme or amended. anmual instalment to be clatrged to revenue or rate in sulstitution for the present or original ammal instalment.
(12) Prepare a statement showing the final repuyment of the loan by the operation of the fund under the amended conditions. Statement XIS.B.
(1.3) Prepare a pro forma acromnt showing the amome which should be in the fund at the end of each year of the mexpired or substituted period of repayment.

Pro forma Aceount, No.7.
Memo. The above method is worded to apty to a reduction in the rate of aecommlation or other faetor, but it uill apply equally to an incrense in such factors with rer!y little modification. It should be compared with the drductive method summarised at the head of Chapter XXIV.

General Consideratioxs as to the Rate per cent.

Having described the various methods of dealing with problems arising out of a deficiency or a surplus in the sinking fund, further questions will now be considered in comection with the rate per cent., begiming with cases in which it is anticipated that the original estimated rate of accumulation will not be realised in future. This is mainly due to a fluctuation in the money market of a more or less permanent character affecting the future return on all investments. Questions will also arise in consequence of a reduction in the rate of income to be received in future on investments already made, as was the ease in 1888, when, moder Mr. Goschen's Finance Act, the rate of Consols was reduced from? per cent. to $2 \frac{3}{4}$ per cent. for 15 years, after which a further reduction to $2 \frac{1}{2}$ per cent. took place. Other causes may operate in a similar manner, especially in the rase of commereial and financial undertakings.

The problem will differ according as the variation in the original conditions affects:-
(1) The rate of accumulation anticipated to be realised on the investment of future accretions to the fund.

Tariation A.
(2) The rate of income to be received on the present investments representing the fund.
(3) Both the above rates in combination. Tariation C.

In making the adjustments it will at times be difficult to forecast accurately the future rate of income to be received on the present investments. In such cases it is wise to form a conservative estimate of the future rate and fix it on the low side: or to take a slightly lower rate of accumulation and thereby increase the annual instalment to be charged to revenue or rate account. In discussing the following rariations it will be assumed that although the future rate of income to be received upon the present investments will change, yet it will be uniform during the whole of the unexpired reparment period. But cases may arise in which this will not be so, but in which the rate of income will again rarr, during the term, in a definite manner laid down in adrance, as in the case of Consols previously referred to. A variation of this nature. occurring during the unexpired portion of the reparment period. will be deferred to Chapter XXVTI. When ronsidering Variation B (rate of ineome only) in Chapter XX, it will be found that the future rate of accumulation is the most important factor in the adjustment, although it may not be the greater as regards the actual amount of moner involved.

The following discussion will be confined to a reduction only in both the abore rates per cont., but it should be borne in mind that the method to he adopted and described will apply equally to an increase in both rates or to an increase in one and a decrease in the other. This will he hetter appreciated after considering the methods of making the adjustment by the annual increment (ratio) methor.

Any deficiener in the fund at the time of making the cuquirr, and arising out of a reduction in the rate of ineome received from inrestments previously made, or from other causes, will not affect the present method of ealculation. Ans such defieieney may or may not be diseorered on aseertaining the present position of the fund as described in the previous chapter. The following methorl differs from the one there deseribed, in that, in the present example, the basis of the adjustment is the ralue of the present investments. and not the amonnt to which they will aremmulate at the end of the term.

In dealing with a deficiency, it was assumed that there would not be any variation in the rate of accumulation, whereas in the present example the reduction in the rate of arcumulation is the cause of the rectification under discussion.

In an actual enquiry of this nature, the amount in the fund at the end of the 12 th year, as shown by the records, would most probably be compared with the calculated amount which should be in the find according to the pro forma account, and the deficiency or surplus thereby ascertained, but it is not absolutely necessary to do this. The important factors are, the value of the present investments, the future income they may be expected to produce, and the rate of accumulation which will be yielded by the investment of the future accretions to the fund. In this romection Chapter XIV, dealing gencrally with the present investments and the anmal increment should be consulted, especially as to the meaning of the term " present investments." The deductive method will apply to the rectification of a present deficiency or surphus combined with a variation in the future rates of income or accumulation, because in this case the enquiry is based upon the value of the investments now representing the fund ; and the method of approaching the problem is not altered because that value is greater or less than the amount which should be in the fund according to the original calculation, and as shown by the pro forma account. The method about to be described will show the amended annual instalment to be chargerl to revemue or rate, based upon the present state of the fund, but if it lee required to allocate this as between a present deficiency or surplus and the future reduction in the rates of income or accumulation, it will be necessary to make, first, the calculation as to the deficiency or surplus, as already described, followed by the enquiry as to the increased amnal instalment due solely to the fall in the rate or rates per cent.

Detalls of the Sinkfag Fund. The sinking fund which will be used to illustrate all problems relating to a variation in the rate per cent. will apply to a loan of $£ 26,495$, repayable at the end of a period of 25 years, requiring an ammal instalment of $£ 680 \cdot 234$ to be set aside and accumulated at $3 \frac{1}{2}$ per cent. [Calculation (XV) 1], and it will in all cases be assumed, as when considering the rectification of a surphus, that at the end of the 12 th year the fund stands at the proper calculated amount of $£ 9992 \cdot 74$, as found by Calculation (XV) 2. This sum is represented by investments worth that amount, which
have up to the present yielded an amual income at the rate of $3 \frac{1}{2}$ per cent. per annum, being the original estimated rate of accumulation upon which the above instalment was based. This sum of $£ 99: 5 \cdot \tau 4$, it accomulated at the above rate of $3 \frac{1}{2} p^{\prime \prime}$ cent., will provide for the repayment of $£ 15534: 38$ of original loan at the end of 25 years, as found by Calculation ($\mathrm{X} \mid \mathrm{II}$) 2.

Cariations in the Rate Per Cent., to be Considered in Detafl. In order to illustrate the problems to be discussed in this and following chapters three variations from the original conditions as regards the rate of accumulation of $: 3 \frac{1}{2}$ per cent. will be considered. In fixing this rate percent. in the first instance it was assumed that it would continue to be received upon the whole of the accumulations of the fund during the whole of the repayment period of 25 years. If this anticipation had been realised the rate per cent. of income upon investments and the rate per cent. of accumulation would have been the same in all cases, namely, $3 \frac{1}{2}$ per cent., and the fund would have pursued its calculated course until maturity.

In the three examples about to be considered a gradual decrease in the rate of income from investments, as well as in the rate of accumulation, will be assumerl to oceur between cach set of conditions; but when comparing the several results in a later chapter they will be considered only as regards the alteration in the rate of accumulation as follows:-

Chapter.	Variation.	Compared with	Finture rate of income investment nvestments	$\begin{gathered} \text { Future } \\ \text { rccute of } \\ \text { accululation. } \end{gathered}$
NIX	A	Original conditions	unaltered	reduced
XX	13	Variation A	reduced	maltered
XXI	C	Variation 1	reduced	reduced

The paramount importance of the rate of accomulation in such problems has already been referred to, and it will be noticed from the above table that lariations (Λ) and (C) alone contain any variation in that rate. The following details as to each variation are giren for convenience of reference and comparison:-
Chapter XIX. Tariation (.1) in the rate of accumulation only. Compared with the eonditions at the time the original ealculation was made.
In this example the rate of accumulation is reduced from $3 \frac{1}{2}$ to $?$ per cent., but the rate of income upon the present investments remains at $3 \frac{1}{2}$ per cent.

Chapter XX. Variation (B) in the rate of income upon the present investments only.
Compared with the conditions in Variation (A).
In this example the rate of accumulation is unaltered, and remains at 3 per cent., but the rate of income upon the present investments is reduced from $3 \frac{1}{2}$ to 3 per cent.

Chapter XXI. Variation ($\left(C^{\prime}\right)$ in the rate of accumulation, as well as in the rate of income upon the present investments.
Compared with the conditions in Variation (A).
In this example the rate of accumulation is reduced from $;$ to $2 \frac{1}{2}$ per cent., and the rate of income upon the present investments is reduced from $3 \frac{1}{2}$ to ${ }^{\prime}$ per cent.

These variations will now be examined, and will be treated as independent problems instead of variations of the same fund. This procedure involves a certain amount of repetition, but is adopted in order to emphasize the principles involved, with the view of finding a shorter method of making the adjustments. There is also a further advantage, namely, that each problem may be studied separately so that any cases occuring in actual practice may be referred to a similar example completely worked out in detail.

It will be noticed on referring to the above details and to the summary of results given in Chapter XXI, Statement XXI, C, that the above rariations are not isolated cases without any connection. They are intimately related by design, and form a series commencing with the original conditions and leading by successive stages to Variation © (rate of income and accumulation). When considering the derivation of a rule and formula relating to the adjustment of a sinking fund in consequence of a simultameous variation in the rates per cent. of accumulation and income on investments these variations will be combined, and in one instance (Calculation XXII, C), Yariation A will be inverted to serve as an example of an increase in the rate per cent. of accumulation.

Any decrease in the rate of income yielded by the present investments or by the future investments of the ammal accretions to the fund will have the effect of reducing the sum to which the fund will amount at the end of the repayment period. The amount of such deficiency will depend upon the actual rates to be received in future as compared with the
original rate of accumulation, namely, $3 \frac{1}{2}$ per cent. It is necessary so to adjust the sinking fund that the deficiency due to a fall in the rate either of income or of accumulation shall not only be made good, but be spread equally over the remaining 13 years, by increasing the original sinking fund instalment by such an annual amount as will be sufficient for the purpose.

The Deductive Method. In order to ascertain the amount by which the annual instalmeut should be increased, the present simking fund factors may be reduced, either to terms of present value or to equivalent amounts of original loan repayable at the end of the 25 years, but, as in the former example, it is preferable to deal with the figures representing equivalent amounts of loan.

In each of the above variations the common factors are:-
(1) A sum of $£ 99: 2 \cdot \sqrt{4}$ standing to the credit of the fund at the end of the 12 th year, which is invested and expected to realise that sum at the end of the repayment period.
(${ }^{2}$) The income arising from the above present investments.
(3) The original annual instalment of $£ 680 \cong 34$ to be set aside for the unexpired term of 13 years, and which will also be invested each year.
(4) The income to be received anuually from (2) and (3) when invested.
Items (2) and (3) constitute the present annual increment of the fund, as described in Chapter XIV and in Chapter XXII.

In each case the original amual instalment of $£ 680: 2: 3$ will be supplemented by an additional ammal instalment to be ascertained, and which, added to the present anmal increment, will give the future or amended anmal increment of the fund. The method of approaching the solution of the problem is the same in each variation.

A statement will be prepared similar to XIX, A, showing the position of the fund at the end of the 12 th year, when the assumed necessity arises to make the adjustment due to a change in the rate per cent. cither of income or accumulation or both. This statement will commence with the amount now in the fund, which will be included at its present value without acemmation. This is equivalent to deducting that amount from the original loan, leaving the balance to be provided by the accumulation of the future or amended ammal increment which is composed of the future income from the present investments and the amended ammal instalment.

This is a departure from the procedure followed previously in dealing with a surplus or a deficiency in the fund, in which cases there was not any change in either of the rates per cent.

The above Statement $X I X, A$, will next include the present aunual increment consisting of the income from the present investments prior to the variation occurring, and also the original annual instalment. Both these annual sums will be converted, by calculation at the future accumulation rate, into equivalent amounts of original loan repayable at the end of the unexpired period. The balance will represent the amount of original loan for which further provision has to be made cansed by the decrease in the rates of income or of accumulation, and from this balance of loan the required additional annual instalment may be ascertained on standard calculation form, No. Bx. There is a difference in the method of treating the income from investments in Statements XX, A, and XXI, A, as compared with Statement XIX, A, but they may all be treated by the deductive method summarised at the head of this chapter. A further statement similar to NLX, B, is then prepared in each case showing how the fund will ultimately work out to repay the full amount of the loan at the end of the original repayment period.

Having ascertained the future or amended annual instalment in each case by the deductive method, the results will afterwards be used to derive therefrom a simple rule and formula by which to make the calculation by direct reference to the published tables or formulæ. It will then be found that by taking the present annual increment as the prime factor instead of the annual instalment, all such variations may be divided into two classes depending entirely upon the rate of accumulation. In variations similar to A and C , in which the rate of accummlation is reduced or increased, a calculation must be made by means of the tables or formula, but in variations similar to B, where there is a variation in the rate of income only, the rate of accumulation remaining maltered, the amended annual instalment may be ascertained without calculation. This method is shown in Statement XX. C. called " the direct method," and it may appear superfluous to include the longer deductive method shown in Statement XX, A.

It is necessary, however, to state that in all cases the income from investments has been treated as being received annually, whereas in all probability it would be received half-yearly. The difference between an anuual and a semi-annual accumulation has been pointed out at the end of Chapter T, giving also
the methods to be adopted in the case of any periodic accumulation other than annual.

The Anvul Incremext (Ratio) Method. It has already been stated that instead of using the above deductive method the same result may be oltained by direct calculation by means of a formula and rule. This will be fully described in Chapter XXII (Calculation XXII, C), which shows the future or amended annual increment of $£ 1060474$ as found by the above deductive method. From the amended annual increment so found the future or amended annual instalment may be obtained by deducting therefrom the future annual income from the present investments. This ratio method by direct calculation will also apply to Variation C, where there is also a change in the rate of accumulation, but in the case of Tariation B, in which the rate of accumulation remains unaltered, the amended ammul instalment can be ascertained by a much more direct methorl without calculation, as explained above.

The method of finding the amended annual instalment is showr in the following Statement XIX, A, and the final reparment of the loan thereby is shown in Statement XIX, B, and in the pro forma account No. i.

The Rate per cent.
Statement XIX. A.

The Deductive Method.

Variation A, rate of accumulation only.

showing the method of atjusting the ammal instalment, in consequence of a variation in the rate of accumulation without any variation in the rate of income from the present investments, or in the period of reparment.

This example is compared with the conditions at the time the original calculation was made.

Conditions before adjustment (at end of lith year)
Amount of loan reparable in 25 years £゚26.495
Amount in the fund (at end of lith rear) £993゚・it
Present anmal income (previousty) reerived therefrom, at $: 3,2$ per cent. per ammom $£: 342 \cdot 648$
Present ammal instalment, to be aremmulated for $1:$ years at $3 \ldots$ per cent. $\pm 680 \cdot 234$
D'esent annual increment £ $10: 2 \cdot 882$

Variation from the above conditions :-

The rate of accumulation of the fund is reduced from $3 \frac{1}{2}$ to 3 per cent.

Equivalent amount of
Present investments (at end of 12 th year), representing the amomit now in the fund
$£ 9932 \cdot 74$

Present annual income from investments:-
Amount of an ammity of \ldots... $£ 34 \cdot 648$ accumulated for 13 years, at 3 per cent. Calculation (X1X) 1 $£ 542949$

Original annual instalment :-
Amount of an annuity of $£ 650 \mathfrak{D}: 4$
accumulated for 13 years, at 3 per cent.
Calculation (XIX) $\mathfrak{2}$
± 10623.75

Present annual increment£102••882
Provision already made will repay loan of
£2598598

Additional annual instalment:-
Balance, being amount of original loan unprovided for owing to the above decrease in the rate of accumulation recpuiring an additional amual instahment, to be set aside and accumulated for 13 years at 3 per cent. Calculation (XIX) 3 £ 29.592

Amount of original loan £26495•00

Amended annual increment, being:-
Income from investments ... $\pm: 47 \cdot 648$
Amended amual instalment ... 71:826
$£ 1060474$

Variation A, rate of accumulation only.

Showing the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the anuual instalment, consequent upon a variation in the rate of accumulation, without any variation in the rate of income upon the present investments, or in the period of repayment.

Equivalent
amount of original loan.

Present investments (at end of 12 th year) £9932. 4

Amended annual increment:-

$$
\text { Original annual instalment } £ 680: 234
$$

Additional annual instalment ... : $: 2 \cdot 592$

Total out of revenue $£ \div 12 \cdot 826$
Income from investments $347 \cdot 648$
± 10604 -

Amount thereof, acrumulated for $1: 3$ yars at
3 per cent. Calculation (NIX) $4 \quad £ 1656 \cdots \cdots 6$
Amount of original loan … ... fe649500

Pro forma Sinking Fund Account, No. 7.

A Variation in the Rate of Accumulation only.
Loan of $\mathfrak{£ 2} 6,495$ repayable at the end of 25 years.
Showing the final repayment of the loan, by the operation of

Statement XIX. B. Rate of accumulation, :' per cent.

Year.	Amount in the fund at beginning of year.	Income received from investments 3 per cent.	Annual sinking fund instaiment.	lncome received from investments made after 12th year 3 per cent.	Amount in the fund at end of year.	
1						1
2						2
3						3
4	The	amount	the fun	d at the ed	of	4
5		13th year	$\pm 9932 \cdot \tau 4$	4 , is the cor	rect	5
6		nlated an	unt, as shoul	own by Cal	la-	6
7		(XV) 2,	and by	the pro f	ma	7
8		nt, No.	Chapt	XT.		S
9						9
10						10
11						11
12					$9939 \cdot 744$	12
13	9939.744	$347 \cdot 648$	712.826	-	10993:218	13
14	$10993 \cdot 218$	$3 \pm .6 \pm 8$	712.826	$31: 814$	12085506	14
15	12085.506	$347 \cdot 648$	712.826	$64.58: 3$	13210.563	15
16	13210.563	$347 \cdot 648$	$713 \cdot 896$	98.335	14369 372	16
17	14369:322	$34 \cdot 648$	-12.826	13:3999	$1556 \cdot 945$	17
18	15562945	$347 \cdot 648$	712.826	168906	16792325	18
19	$16792 \cdot 325$	34.648	$712 \cdot 826$	$\because 05.787$	18054.586	19
$\because 0$	18058586	$347 \cdot 648$	$712 \cdot 896$	249.75	$1936 \sim 835$	$\because 0$
$\because 1$	19369.835	$3 \pm \cdot 648$	712.826	28.903	$20706 \cdot 212$	21
22	20706.912	$347 \cdot 648$	712.826	$323 \cdot 204$	22089890	2
23	$22089 \cdot 890$	$34 \cdot 648$	712.826	364.714	23515.078	23
24	$23515 \cdot 078$	$345 \cdot 648$	712.826	$407 \cdot 470$	$2498: 022$	24
25	$24983 \cdot 029$	$34 \% \cdot 648$	712.826	4.51504	26 ± 95.000	25

CHAPTER XX.

SLNKING FUND PROBLEMS, RELATING TO THE RATES PER CENT. OF INCOME AND ACCUMULATIUN (Continued).

Cariation B, in whicil there is a variation in the rate of income doon the present investments without any variation in tile rate of accumulation or period of Repayment.

Statement XX. A.
Summary of the methods of adjustment. The dedictive method. Tile direct method without calculation. The annual increment (balance of loan) method. Statement showing the final repayment of the loan by the operation of the amended andul instalment.

Summary of the methods of adjustment.

(I) The deductive method, as summarised at the head of (hapter $\mathrm{X} I X$, will not apply, since there is uot any variation in the rate of accumulation. The following adjustment by the deductice method is only of academic interest and has hardly any practical ralue. Statement X.Y. A.
(1I) The direct method, without calculation, as summarised belour, should always be ased in actnal practice.

Statement $\mathrm{IX} . C$.
(III) The anmal increment (balanee of loan) method, as summarised at the head of Chapter X XII, may be used.

Statcment SX. 1).
(I') The anmual inerement (ratio) method, as summarised at the head of ('hapters XXIII, XXV', and XXII, will not apply to this rariation, as there is not any change in the rate of arrimmulation.

Vote. The torms used in the following summary are fully explained at the head of (hapter X.XII. If it be linowen or anticipated that the rate of income to be yielded in future b!y the present incestments representing the fund will wot be uniform during the whole of the uurexpired portion of the repayment period the above methods will not apply, and the
adjustment must be made by the method fully described in Chapter XXIII.

Summary of the drect method (without calculation), of ascertaining the amended annual sinting fund instalment due to a variation in the rate of income yielded by the present investments without any variation in the rate of accumulation or in the period of repayment.

Statement X.Y. ${ }^{\prime}$.
(1) Having asecrtained the ralue of the present investment.s in the manner already described,
(2) Calculate the anmual income previously received therefrom during the expired portion of the original repayment period (the present anmual income).
(3) Calculate the anmual income expected to be received therefrom during the unexpired portion of the original repayment period at the future rate per cent. of income (the future annual income).
(4) Ascertain the decrease or increase in such future ammal income as compared with the annual income proviously recrived.
(5) Add to, or deduct from, the original ammal instalment the annual decrease or increase of ineome so aseertained.
(6) The result is the amended ammual instalment to be set aside out of revenue or rate during the unexpired portion of the original repayment period.
(7) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended conditions.

Statement NX. B.
(8) Prepare a pro forma aecount showing the amount which should be in the fund at the end of cach year of the unexpired repayment period.

Pro forma account, No. S. The amounts in the fund at the end of each year will be the same as in the original pro forma account since there is not any rariation in the rate of accumulation or periol of repayment, but the anmual increment, although, unaltered will have a different origin. Pro forma account To. 1, Chapter XV, will not apply in this case. the rate of arrumulation being $\frac{31}{2}$ per cent.

Tife Denuctive Method. After discussing the deductive method of finding the amended annual instalment due to a change in the rate per cent. of accumulation (Variation A) in

Chapter XIX, a summary of the successive stages of the adjustment has been prepared and placed at the head of that chapter. and it is therefore only necessary to refer to that summary. Attention has already been drawn to the general considerations to be borne in mind in the rectification of a sinking fund in consequence of any variation in the rates per cent. of income or accumulation. The variation about to be considered is based upon the same imaginary sinking fund as Variation A (rate of accumulation), details of which are given in the previous chapter. At the end of the 12 th year the sinking fund stands at the proper calculated amount of $£ 9932.74$, as found by Calculation (XV) 2. But whereas the conditions in Variation A (rate of accumulation) were compared with the original conditions, the present Tariation B (rate of income), will be compared with the conditions in Variation A (rate of accumulation).

The rate of income is reduced from $3 \frac{1}{2}$ to 3 per cent., but the rate of accumulation is unaltered, and remains at 3 per cent.

It has been stated in the previous chapter that the future rate of accumulation is the most important factor in the adjustment. That conclusion was hased, in advance, upon the results of the discussion of the present variation, because, although the same deductive method will be used which has been applied to Variation A (rate of accumulation), this method is quite unnefessary in practice, although it is instructive as illnstrating the predominant effect of the rariation in the rate of accumulation.

It will be found that when the rariation in the rate per cent. applies only to the rate of income from the present investments there is not any necessity to make any calculation whatever beyond adding to the original annual sinking fund instalment an amount equal to the annual loss of ineome caused by the reduced yield per cent. of the present investments, or by dedurting therefrom any inerease in such annual income. The remarks in the prerious chapter, as to the three variations being derived by suceessive stages from the original conditions should be carefully remembered, and will be further emphasised.

The original and varied conditions are given in the following Statement, XX. A., and attention is again drawn to the fact that in this rase also the income from investments is treated as being receised annually, instead of semi-anmually. Two statements will be prepared exactly similar in prineiple to those in the previous chapter, dealing with Tariation A (rate of accumulation), showing in XX. A. the deduetive method of ascertaining the amended annual instalment, and in XX. B.
the final repayment of the loan by the operation of the sinking fund, under the altered conditions. For the purpose of the comparison to be made later, this variation will also be compared with the original conditions. (Sce Nitatements XX. A. and XX. B. at end of chapter.)

The Direct Method (without calculation). It has been pointed out in the previous chapter dealing with a rariation in the rate of accumulation only that instearl of making use of the deductive method, there described, for the purpose of ascertaining the amended amual instalment, the same result may he obtained by direct calculation by means of a rule and formula, which will be fully describerl in 'hapter XXIII, namely, the annual increment (ratio) method. This remark applied to Variation A as compared with the original conditions in which there is a reduction in the rate of accumulation, but without any variation in the rate of income from investments. In the present case, Variation B, as compared with the conditions in Tariation A (rate of accumulation) there is a reduction in the rate of income upon the present investments, without any variation in the rate of accumulation, and the deductive method will again be used. On comparing the two results, it is found that in both cases the future or amended annual increment is $£ 10604$ rathough the amenderl anmal instalment is increased, namely, from $£ 712.826$ in Variation A to £r 62490 in Tariation B. The difference between the two amended annual instalments is $£ 49 \cdot 664$, which is the amount by which the future annual income in Tariation A is reduced owing to the fall of $\frac{1}{2}$ per cent. in the rate of income to be vielded by the present investments under the altered conditions of Tariation B, namely, from £:,4rats in Variation A to £297.984 in Tariation B.

This proves that when the rate of accumulation remains maltered, there is not any alteration in the ammal increment, and, further, that the amended amnal instalment may be ascertained without any calculation whatever, by merely adding to the present annual instalment the amount of the decrease in the annual income to be received from the present investments under the altered comditions, and the same applies equally to an increase in the rate per cent. rielded by the present investments.

The following Statement XX. C. illustrates the adjustment by the direct method, without calculation.

Although the direct method of finding the amended annual
instalment will be sufficient in all cases where there is not any variation in the rate of accumulation, it should be prosed by preparing a statement similar to No. XX. B. showing the position of the fund and the final reparment of the loan after making the adjustment. The rule and formula to be described later in Chapter XXIII (the annual increment (ratio) method), be which the future or amended annual increment under the altered conditions may be found by direct calculation from the present annual increment under the previous conditions, cannot obriously be applied to cases in which there is not any variation in the annual increment, which depends entirely upon the rate of accumulation.

In the previous chapter the deductive method is employed to ascertain the amended annual instalment, consequent upon a variation in the rate of accumulation only. In the following Chapter (XXI), in discussing Tariation C, it will be seen that this deductive method is also available for ascertaining the amended annual instalment consequent upon a rariation in the rate of accumulation, accompanied by a variation in the rate of income from the present investments. But in the case of a variation in the rate of income only, the deductive method may be replaced by one much simpler. At the head of this chapter, therefore, although reference is made to the deductive method as summarised in Chapter XIX, the direct method without calculation has been treated as the standard method to be adopted in practice, and has been stated in summary form.

In Chapter XIX, the conditions in Tariation A (rate of accumulation) are compared with the origimal conditions, and it has been found that an additional annual instalment of £? $2 \cdot 592$ is required to compensate for the decrease in the rate of accumulation. Proceeding to Variation B, it has been found that although the rate of accumulation remains maltered, the rate of income from investments is redued. This reduction in income requires a further increase in the annual instalment of £49.664. It is now possible to eompare the amended annual instalment in Tariation B, with the annual instalment under the original conditions as follows:-
The original annual instalment was £680 234
Additional instalment due to the reduction in the rate of accumulation. Tariation A.
$32 \cdot 592$ Additional instalment due to the reduction in the rate of income from invectments. Variation B
$49 \cdot 664$
Amended annual instalment.
Variation B £ $\quad \underset{62490}{ }$
or an increase of $£ 2.256$, but on comparing the anmal increment in Variation B (rate of income), with the annual increment under the original conditions, it is increased by only
 proves that so long as the rate of accumulation remains maltered the amual increment does not require to be ammoled, but if the portion of the ammal insement derived from outside investments is redured, owing to a fall in the rate of income yielded by the present investments, the burden must be horne by the other partner, namely, the revenue or rate account which provides the annual instalment.

Statement XX. D. shows the method of making the adjustment by the ammal increment (halance of twan) method, which will be fully deseribed and summarised in Chapter XXII.

The Rate per cent.
Statement XX. A.

The Deductive Method.

Variation B, rate of income only.

Showing the method of adjusting the annual instalment in ronsequence of a variation in the rate of income upon the present investments without any variation in the rate of accumulation or in the period of reparment.

This example is compared with the original conditions as modified by Variation 1.

Conditions before adjustment (at end of 12 th year),
Amount of loan repayable in 25 years $£_{2}(6,49.5$
Amount in the fund (at end of 12 th year) £9902 it
Present amual income (previously) received therefrom, at $3 \frac{1}{2}$ per cent. per annum £24i•(64s
Present ammal instalment, to be accumulated for
1:3 years at 3 per cent. £ 12.826
Present aumual increment £1060.tit
Variation from the above conditions :-
The rate of income fielded by the present investments is rectuced from $3 \frac{1}{2}$ to ? per cent. Future ammal income £ £ 9 98. Reduction in annual income $49 \cdot 664$ Increased anmual instalment $49 \cdot f i f t$ Future ammal inerement $10604 i t$

Amended annual increment, being: -
Income from investments £297.984
Amended annual instalment i6S. 490
$£ 1060 \cdot 474$

Variation B, rate of income only.

Showing the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the aunual instalment, consequent upon a variation in the rate of income upon the present investments without any variation in the rate of accumulation, or in the period of repayment.

Present investments (at end of 12th year) .. £9939.74

Amended annual increment:-

Uriginal annual instalment £680-23t		
Additional. ditto.	Variation A	$32 \cdot 59 \sim$
	Variation B	49.664
Total out of revemue £\%62.490		
ncome from		297.984

$$
£ 1060 \cdot 474
$$

Amount thereof, accumulated for 19 years at 3 per cent. Calculation (XX) $3 \pm 16502 \cdot 26$
Amount of original loan £ং649500

The Rate per cent.
Statement XX. C.

The Direct Method (without calculation).

Variation B, rate of income only.

Showing the method of adjusting the ammal instalment in cousequence of a rariation in the rate of income upon the present investments without any variation in the rate of accumulation or in the period of reparment.

Reguired the amended annual instalment, to be set aside and accumulated as a sinking fund to compensate for a reduction, from $: \frac{1}{2}$ to $:$ per cent., in the rate of income to be received from the present investments, valued at $£ 9939 \cdot 74$. Rate of arcumulation :' per cent.

Ammal sinking fund instalment, at date of adjustment as calculated or as ascertained in

Add decrease in annual income from insestments

$$
\begin{aligned}
& \text { at } 3!\text { per rent. ... } \\
& \text { at }: 3 \text { per cent. ... }
\end{aligned}
$$

Memo. In the rase of an inerease in the amoment of the finture ammal ineome, such inmeased ineme should be deducted from the wrimal ammal instalment.

The Rate per cent.
Statement XX. D.

The Annual Increment (balance of loan) Method.

Variation B, rate of income only.

To find the amended annual sinking fund instalment consequent upon a variation in the rate of income upon the present investments, without any variation in the rate of accumulation, or in the period of repayment.

Rate of income from investments reduced from $3 \frac{1}{2}$ to ${ }^{3}$ per cent.

Rate of accumulation, 3 per cent.
For Rule, see Chapter XXII.

Amount of original loan (25 years) £2949500
deduct amount in the fund at the end of the 12 th year ... $. . . \quad \ldots \quad \ldots \quad . . . \quad . . \quad £ 99: 2 \cdot \tau 4$

Balance of loan £16562•26

Amended annual increment, to be added to the fund, and accumulated at 3 per cent., to provide this amount at the end of 18 years

Calculation (XX) $4 \underset{1060454}{ }$
deduct income to be received from the present investments ($£ 99: 3 \cdot 74$) at 3 per cent. £297.984

Amended annual iustalment $\underset{\underline{\text { £ } 62 \cdot 490 ~}}{ }$

Pro forma Sinking Fund Account, No. 8.

A liariation in the rate of Income upon the present Investments.
Loan of $£ \because 6,4 \% \cdot 5$, repayable at the end of 2.5 ycars.
Showing tife final rephyment of the hons, by the operation of the increased annual instalment of $£ 562490$.

Statement XX. B. Rate of accumulation, 3 per cent.

Year.	$\begin{aligned} & \text { Amount in } \\ & \text { the fund } \\ & \text { at lexinning } \\ & \text { of year. } \end{aligned}$	$\begin{gathered} \text { Incone } \\ \text { reeevivel } \\ \text { forme } \\ \text { investurents. } \end{gathered}$	sinking fuml instalment.	$\begin{aligned} & \text { Income } \\ & \text { received from } \\ & \text { investments mate } \\ & \text { after } 1.2 \text { th year } \\ & 3 \text { per cent. } \end{aligned}$		Year.
1						1
2						2
;						3
4	The amount in the fund at the end of the 12 th year, $£ 9992 \cdot 74$, is the correct calculated amount, as shown by Calculation (XT) $\xlongequal{2}$, and by the pro forma account, No. 1, 'hapter XV.					4
\%						5
6						6
-						\%
8						8
9						9
10						10
11						11
12					$9993 \cdot 744$	$1 \because$
1:	9932.744	297.984	\%62.490	-	1099:218	1:3
14	10993:218	297.984	- 62.490	:1.814	12085.506	14
15	12085506	297.984	\% $62 \cdot 490$	64583	$1: 210.563$	15
16	1:9210.563	297.984	-62. 490	98.395	14369.322	16
17	14:69:3\%	297.984	-62.490	1:3.099	$15562 \cdot 945$	15
18	15562.945	297.984	-62.490	168:906	$16.92 \cdot 395$	18
19	16792.305	297.984	-62.490	205085	18058.586	19
20	18058586	297.984	-62 490	243.755	$19362 \cdot 835$	20
$\because 1$	19362-835	297.984	762.490	28:903	$\bigcirc 0706212$	21
咨	$20706 \sim 1 \approx$	$297 \cdot 984$	\% $62 \cdot 490$	329304	$\because 089890$	22
23	22089890	297.984	\%62490	:364.714	$2: 3515078$	23
明	23515078	298.984	763 490	$407 \cdot 470$	$\because 498: 020$	24
25	$2498: 0 \% 2$	297.984	$76 \div 490$	459504	$\mathfrak{2 6 4 9 5 0 0 0}$	25

CHAPTER XXI.

SINKING FUND PROBLEMS RELATING TU THE RATES PER UENT. OF INCOME AND ACCUMULATION (Continued).

I hifation C', in wimeli there is a variation in the rate of ACCUMULATION゙ AND ALSO IN THE RATE OF INCOME UPON THE PRESENT INVESTMENTS, BUT WITHOUT ANY VARIATION IN TIFE I'ERIOD OF REPAYMENT.

Sumalat of the methods of adfestaent. The deductive METHOD. COMPARISON OF RESULTS OBTAINED IN THIS AND PREVIOUS CHAPTERS IN ILL IROBLEMS INVOLVING A VARIATION IN THE RATE PER (ENT. STATEMENT SHOWING THE FINAL REPAYMENT OF TIIE LOAN BY TIFE OPERATION OF THE AMENDED ANNUTL INSTISMENT.

Summary of the methods of adjustment.

(1) The deductive mothod, as summarised at the head of Chapter NKX, will apply, lut has been slightly modified in statement XXI. A.
(II) The direct method, without calculation, as swmmarised at the head of Chapter X.X, will not apply to this. rariution.
(III) The annual incroment (balance of loan) method, as summarised at the head of Chapter XXIl, may be used, but will not be applied to the example under revieu.
(IV) The annual increment (ratio) method, as summarised at the head of Chapter XXIII, may be used, but will not be applied to the example under review.

Note. The terms used in the summaries above mentioned are fully explained at the head of Chaper XXI7. In all the above methods it is imperatire that the rates of acenmulation and of income from investments be uniform during the whole of the unexpired or substituted period of repayment.

The enquiry into the methods of adjusting the annual sinking fund instalment in consequence of any variation in the rate per cent. is now almost completed. Variation Λ, which affected the rate of accumulation only, is fully discussed in Chapter NIS. In the case of Variation B (Chapter XX) the varying factor is the rate per cent. of income to he yielded by the present investments representing the fund. The enquiry will now be completed by examining Variation \mathbb{C}, in which there is a simultaneous change in both the above rates, and the deductise method will agan be used, as fully deseribed in Chapter IIX, and of which a summary of the various stages is placed at the beginning of that chapter. The two preceding chapters deal exhaustively with all general questions affeeting the enquiry, and they will apply equally to the present variation.

The position of the fund at the time of making the adjustment is fully set out in the following statement XII. A., which is similar to those prepared to illustrate the rariations already considered. These conditions are based upon those obtaining when the original calculation was made, and althongh the present example will be compared with the conditions in Sariation A (rate of acemmlation) they will also be compared with those originally existing. As in previous instances it will be assumed that all sums are added to the fund and aferumulated annually. In the following chapter (XXII) the whole of the results of the emquiry into the rate per cent. will be compared in order to show the general effect of such rate upon the accumalation of a sinking fund. The investigation will then be extended in order to derive a rule and formula by means of which the adjustments may be made by the more direct anmal increment (ratio) method.

Similar statements have been prepared as in the previous variations, namely, XXI. A., showing the amended annual instalment as ascertained by the deductive method; and XXIT. B., showing the fimal repayment of the loan by the operation of the amended ammal instalment so aseertained, as shown be the profoma account, No. 9.

The mentts already obtained may now he briefly stated, both with regad to the original conditions an well as lariations A. B, and $($, in order to show the promesesive variations in the examples which will be used later in disenssing the derivation of a rule and fomma which may be applied to any problem relating to the rate per cent.

The sinking fund instalment as originally calculated, at a rate of accomulation of $: 3 \frac{1}{2}$ per cent., was Calculation (NV^{\prime}) $1 \pm 680: 3: 3$

In Variation A (rate of accumulation only), as compared with the original conditions, the rate of income from investments remained moaltered, mamely, $: 3 \frac{1}{2}$ per cent., but the rate of accumulation was reduced from $: \frac{1}{2}$ to $: 3$ per per cent., requiring an additional instalment, as shown by Calculation (XIX) :' of £:
Amended instalment (A), Statement XIX. A. £ூ19.826
In Varration B (rate of income only) as compared with Variation A, the rate of accumulation remained at :" per eent., but the rate of income from investments was reduced from $:{ }_{2} \frac{1}{2}$ to 3 per erent., requiring an additional instalment as shown ly Calculation (XX) 2 of ..
$\mathfrak{£} 49 \cdot 664$
Amended instahment (B), Statement NX. A. $\pm i 62 \cdot 490$
In lanation C', as rompared with Variation Λ, the rate of aremmulation was further reduced from 3 to $? \frac{1}{2}$ per cent., and the rate of income from investments was also redured from $: 3 \frac{1}{2}$ to $: 3$ pees cent. This required an additiomal instahment, as shown by Calculation (XXI) 4 , of $£ 8: 5099$ but part of this was due to the reduction in the rate of income in Variation B, as above $£ 49 \cdot 664$
$£ 3: 435$
Amended instalment (O.) Statement XXI. A. $£ 59592 \%$
which amended amual instahment is required to be set aside out of revenue or rate and arcomulated in addition to the income from the present investments, in order to provide the loan repayable at the end of the prescribed periond.

In statement XXI. A. following, the additional ammal instalment is ascertaned to be $£ 4: 9099$. This ammal increase is derived directly from the conditions in Variation L, and is made up of the incrased instament due to the reduction in the
rate of income in Variatiou B ，viz．，$£ 49 \cdot 664$ ，and the above amount of $£: 33+435$ due to the variation in the rate of accumula－ tion．In the preseut example there is a variation in both the rates of income and of accumulation，and in this respect it combines the changes in Variations A and B．In Variation B， where there is a change in the rate of income only，the annual instalment is corrected by adding thereto the actual deficiency in the future aumual income．Statement XXI．A．shows by the deductive method that the amount of original loan which would be unprovided in consequence of the concurrent reduction in the abore rates is $£ 125815$ ，requiring an additional annual instalment of £ $8: \because 099$ ，as shown by Calculation（土X1）4．This additional annual instalment is the measure of the two annual losses of interest，and it is possible to allocate to each rate the proportions in which they contribute thereto．This will be seen by referring to the following statement XMI．U．，in which column (2) contains，in the case of Variation A ，the original and additional annual instalments，and also the income from investments，making up the amended amual increment．This agrees with Statement M1S．A．in total，but the income from investments at $3 \frac{1}{2}$ per cent．has been divided as between 3 and $\frac{1}{2}$ per cent．in order to compare this variation with Variation C． The final column（8）shows the deficiency of original loan cansed by the accumulation of each of the component parts of the annual increment at $\mathfrak{2} \frac{1}{2}$ per cent．in Variation C，instead of at ：＇s per cent．，as in Variation A．

This deficiency is arrived at by deducting the amount of loan in column（ $\overline{1}$ ）from the amount in column（4），and is made up as follows，expressed in terms of original loan ：－

Deficiency due to the reduction in the arcumulation of the decrease in income，item $4 \ldots$ ．．．．

ざご家 0
$£ 506 \cdot 21$
Deficiency of annual income accumulated at $2 \frac{1}{2}$ per cent．
£751．94
$£ 1258 \cdot 15$

The deficiency of $£ 1258.15$ of loan requires a total additional anuual instalment of $£ 8: 3099$, as previously ascertained, which is made up of:-

$\mathfrak{£} 8: 309!$

The above amount of $£ 3: 3: 4: 35$ includes the loss of accumulation not only upon the remaining portion ($£ 1010$ S10) of the present annual increment in Variation A, as shown in column \because, but also upon the reduction in the annual income, viz, $£ 49664$. This proves that when, as in Tariation © , the reduction in the rate of income from investments is accompanied by a reduction in the rate of accumulation, the additional amual instalment is measured, not by the actual reduction in the aunual income, as in Tariation B, but by the annual deficieney of income increased in the ratio that the amount of $£ 1$ per anmum at the past rate bears to the amount of $£ 1$ per ammom at the future rate, in each case for the same number of years, being the unexpired portion of the original repayment periorl. This will be referred to later in Chapter MXII, when discussing Calculation (XXII) E. with the object of arriving at a method of making the adjustment by the more direct annual increment (ratio) method. In that case the comparison will be made between Variation C and the original conditions, but the same principles apply, and the above table may be again reforred to with alvantage. (Statement XXI. C. follows.)

The Deductive Method．

Variation C，rates of accumulation and income combined．

Nhowing the method of adjusting the anmal instalment in consequence of a variation in the rate of arommatam and also in the rate of income upon the present investments， but without any variation in the period of reprament．

This example is compared with the original rouditions as modified by Variation A ．
Conditions before adjustment（at end of 12 th year）
Amount of toan repayable in 25 years． £゚26，495
Amount in the fund（at the end of 12 th rear） £9932・テ4
Present anmal income（previonsly）received there－ from，at $: \frac{1}{2}$ per cent．per annum ぎいい・648
Present ammal instalment，to tre acemmotated for 1：3 years at ：3 per cent． £こ12•896
Present amual increment． さ10604ヶ4

Variation from the above conditions ：－

The rate of acemmation of the fumd is redued from \therefore to ？！per cent．

The rate of income pielded be the present insestments is redued from $: \frac{1}{2}$ to $: 3$ per tent．

Future ammal income ．．．．．．．．．．．．£ £ 9－984
The future rate of areumutation ．．．．．． \mathfrak{Q}_{2}^{2} per cent．

Present investments (at end of $12 \mathrm{i}_{\mathrm{h}}$ year), representing the amomet now in the fund	± 9930 - 4
Future annual income from present investments :-	
Amount of an ammity of £.999.984	
$\begin{array}{r} \text { areumulated for } 1: 3 \text { years, at } 2 \frac{1}{2} \text { per cent. } \\ \text { Calculation (NXI) } 1 \end{array}$	£ 4511.61

Original annual instalment :-
Amonnt of an annuity of $£ 680 \cdot 244$
accumulated for $1: 3$ years, at $2 \frac{1}{2} \mathrm{p}^{\mathrm{er}}$ cent.
Calculation (XXI) $\because £ 1029904$
Additional annual instalment (l'ariction . 1): -
Amount of all ammuity of \mathfrak{f} : $2 \cdot 59$?
accumulated for $1: 3$ years, at $\frac{21}{2}$ per cent.
('alculation (XXI): $\quad \pm 493 \cdot 46$
Provision already made will repay loan of $£{ }^{2} 29: 3685$

Additional annual instalment required:-
Balance, being amount of original loan unprovided for owing to the above decrease in the rate of acemmulation, and in the rate of income from investments requiring an additional amual instalment, to be set aside aucl accumulated for 13 years at $2 \frac{1}{2}$ per cent....... $£ 1258.15$

Additional annual instalment

('alculation (XXI) $\pm \pm$| $(1) 099$ |
| :---: |

Amonnt of original loan
$せ^{\circ} 2(649.5 \cdot 00$
Amended annual increment, being:-
Income from investments £゚92•98t
Amended annual instalment 995925
$£ 109 \% 909$

The Rate per cent.

Statement XXI. B.

Variation C, rates of accumulation and income

Showing the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the annual instalment, consequent upon a variation in the rate of accumulation, and also in the rate of income upon the present investments, but without any variation in the period of repayment.
Present investments (at end of 12 th year) ... £9932. 4

Amended annual increment :--

Amount thereof, accumulated for 13 rears at
$2 \frac{1}{2}$ per ceut. ('alculation (XXI) $5 \quad £ 16562 \cdot 26$

Amome of original loan £2649500

The Rate per cent.
Variation A. Rate of accumulation. Varintion C. Rates of accumulation and income from investments.
Variation A. Rate of accumulation.
Showing the romposition of the addition distinguishing between the portions respectively.

Chatcadont tvonit
(1)

Additional anmual instalment due to: 4. Decreased income from investments,
5. Decreare in rate of accumulation Amended amual increment
4mended annual instalment:-

Variation B
Decreased income, Reduced accumnlation, Variation
Income from investments
Amount in the fund
Amount of original loan
 VARLATION $!$

$\begin{array}{r} 680 \cdot 34 \\ 32.592 \end{array}$	(NIX$)^{\bullet}$	1062:3.75	(680 $0: \% 4$	$(\mathrm{XXI})^{2}$	$10 \sim 99 \cdot 04$
	(IIX) \because	50902	$\because 2959$	(XXI) ${ }^{\text {(}}$	$493 \cdot 46$
		-	49.664	(XX1) 4	751.94
			23.965	(XXI) 4	$506 \sim 1$
$\begin{aligned} & \pi 12.826 \\ & \because 4 \% \cdot 648 \end{aligned}$		111397\%	795.925	-	$12050 \cdot 65$
	(XIX) 1	$5429 \cdot 49$	$297 \cdot 984$	-	4511.61
	-	$993 \sim 74$	-	-	$993 \sim \cdot 4$
1060.474	SIX. 3.	$26495 \cdot 00$	$109: 3909$	-	$26495 \cdot 00$

Statement XXI, C.

Pro forma Sinking Fund Account，No． 9.

A Variation in the rate of Acrumulation，as well as in the late of Income upon the present Investments．

Loman of $f_{6} 6,4 \%$ ，repryable at the end of 25 yrar．
Showing the ficil rephment of the lons，by the operation of the increased amumal instalment of $£ 795925$.

Statement XXI．B．

Year 1	Anount in the fund at beginning of year．	Income received from investments．	$\begin{gathered} \text { Annual } \\ \text { Sinking } \\ \text { Fund } \\ \text { instalment. } \end{gathered}$	Income received from investments $2!$ per cent．	Amount in the fumd at end of year．	Year
2						2
3						3
4	The amount in the fund at the end of					4
5）	the 12 th year， $\pm 99: 2 \cdot 74 t$ ，is the correct					5
6	calculated amonnt，as shown by C＇alrulat					6
7	tion（XV）\because annd liy the pro forma					－
S	areomet，No．1，（＇hapter SV．					8
9						9
10						10
11						11
12					$9992 \cdot 54 t$	12
1：3	993\％ 74	297.984	\％ 9.9 .925	－	$110: 360.9$	$1 \because$
14	$11026 \cdot 65 \cdot)$	297.984	7959825	2－：34	$1 \because 1515910$	14
15	12145.910	29.984	79.985	5.939	1：990－198	15
If	$1: 3297198$	297.984	79.9295	81.111	1＋45．5．28	16
17	14575×18	$297 \cdot 984$	7959025	$11: 569$	156以゙．689	17
18	15¢ぶかくり	$295 \cdot 984$	795925	$14 \because \cdot 14$	169＊2 $0 \cdot 5$	1s
19	$16920 \% 45$	$297 \cdot 984$	795．925	$17+690$	1SIBS：946	19
20	1s18s9．16	297.984	7059．925	$\because 06 \cdot 50.5$	$19+8!3.20$	20
$\because 1$	$19+859 \cdots 30$	$290 \cdot 984$	795995	$2: 8919$	$\because 08 ゚ 2 \cdot(18 ゚$	$\because 1$
？		297.981	795995	2～2．2：\％	パ1Sがっt	29
2：		$29 \% \cdot 981$	795925	こ06035	ごこくらが？	？\because
$\because 1$	20.585 .500	2！\％9\％	7950.95	$\because 11 \% 4$	250x：3－3	$\because 4$
25）	かったがっがご，	29\％－984	7959！25	$\because 7 \mathrm{O}$	$\because 6195000$	25

Section IV.

Sinking Fund Problems.
The Annual Increment.

CHAP'TER XXII.

THE ANNUAL INCREMENT METHODS.

Deflnition of terms relating to the andeal inctrement and the methons of ascertaning the amended aryeal instalmext based therfox. This applies to all bamidions in the rate of acculdeation and the period of repifalent, witio of withott hiy varlition in the rate of income dron the present infestments representing the fund.

SINKLNG FCND PROBLEMS RELATLAG TO THE RATE PER ('ENT. (FF ACCMULATHON.

Methons of ascertainatg the hmended ancolal instalment hy dhect chlculation in teras of the anctal increment. Comparison of the resclats already obtained in Cinapters XIX, XX, ind XXI is terms of the anvell instalamet with those obtaned by ments of the anedal increment and the varing rates of accemolation. The anycal inchement (balayce of lons) method.

Summary of the methods of adjustment.

(I) The dednctive method, as summarised at the head of Chapter . TIX,
as to the rate of accumulation, Statement XIS. A. as to the rate of income and the rate of accumulation. Statement X.X1. A.
(II) The direct method, without calculution, as summarised at the heal of Chapter XS, will not "pply to these rariations.
(III) The cumual increment (balamee of loan) method, as summarised belor, is illustruted in the text.
(IJ) The anmual increment (ratio) method, as summarised at the hood of 'hapter X Ylll.
citateme'nt XY/I. ('.

Note. In all cases where the adjustment is made by the anmual increment methods it is imperative that the rates per cent., both of accumulation and income from investments, be uniform during the whole of the unerpired or substituted period of repayment.

The Annual Increment Methods, Definition of Terms.

The present annual increment, at the time of making an adjustment in the annual instalment, consequent upon a variation in the rate of accumulation, or in the period of repayment, or in both these factors combined, is composed of:

1. The present or original anmual instalment, which has been set aside and added to the simking fund up to the time. of making the adjustment, and
2. The present annual income from incestments, representing the fund, which has been reccived up to the date of making the adjustment.

The future or amended annual increment, consequent upon a variation in cither or both of the fuctors of rate per cent. of arcumulation and period of repayment, is composed of:-

1. The future or amemded annual instalment, required to be set aside and added to the sinking fand in consequenee of the above variation or variations, and
2. The future annual income from investments, representing the fund at the dute of making the adjustment whether the rate of income upon such investments remains unaltercd, or is caried.

The ammal increments, as aboce described, are the primary and final factors in all the adjustments by these methods.

The past rate denotes the rate of accumulation upon which is based the present or original annual instalment included in the present annual increment.

The future rate, domotes the rate of acenmulation to be used insteal of the past rate to calculate the future or amonded anmal increment. It will be the some as the past rate in problemes involding a rariation in the period of repayment only, without any rariation in the rate of arcumulation.

The unexpired period, denotes the unctpired portion, at the time of making the adjustment, of the original repayment period upon which the present on original anmual instalment was based.

The substituted period, denotes the increased or reduced number of years over which the future or amended annual instalments shall be spread and at the end of which the full amount of the loan will be repayable. It will be the same as the uneapired period in problems involving a variation in the rate of accumulation only, without a variation in the period of repayment.

The income from investments, representing the amount in the fund does not enter into the actual calculation except as a component part of the present and future or amended ammul increments, as above defined.

The future or amemded ammual instalment, is obtained in all cases by deducting, from the ascertained amended ammal increment, the future annual income from the present investments representing the fund, whether the rate of income upon such inrestments remains unaltered or is varied.

Note. The forcgoing definitions will be referred to in subsequent chapters, without any further explanation or amplification.

General summary of the inntal herement (balance of LOAX) METHOD, of ascertaining the amended annual sinking fund instalment due to a variation in either the rate of accumulation, the period of repayment, the rate of income upon the present investments representing the fund, or any of these factors in combination. The terms used in the following summary are fully explained above.
(1) Ascertain the calue of the present investments in the mamner alread!y deseribed, and deduct the ralue so obtained from the amount of the original loan.
(2) The remainder represents the balduec of loan to be morided by the aecumulation of the future or amended ammul increment, as preriously defined, for the uncapired or substituted repayment period at the future rate of accumulation.
(3) C'alculate the amuity, or amual increment, to be added to the fund and accumulated for the period and at the rate per cent. as in (2).
(4) From the amented amnual increment ascertained as in (3), deduct the future ammal income to be receiced from the present incestments during the whole of the unexpired or substituted repayment period.
(.j) The remainder will represent the future or amended annual instalmont to be charged to revenue or rate account, and added to the fund, during the whole of the unexpired or substituted repayment period.
(6) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended conditions.
(i) Prepare a pro forma account showing the amount which should be in the fund at the end of each year of the uncapired or substituted repayment period.

Memo. In the event of the income from investments not being uniform orer the whole of the repayment period, proceed by the method in Chapter SXIII.

Sinking Fund Problems, relating to the rate per cent. of accumulation. The Anscal Increment. In previous chapters dealing with the three rariations in the rates per cent. of accumulation and income from the present investments, the amended annual instalment has been ascertained by the deductive method described in Chapter XIX.

This method is based upon (1) the ralue of the present investments representing the fund as described in Chapter XIV; $(\mathcal{\sim})$ the annal income to be receired therefrom, and (3) the original amatal instalment. All these factors have been reduced to equivalent amounts of original loan ultimately reparable, in order to ascertain the deficiency in the fund at the end of the repayment period due to the reduction in the rate per eent. of income or of accumulation.

This deficieney of original loan ultimately repayable has been eonverted into an equal annual sinking fond instalment, to be provided ont of revenue or rate, in addition to the original instalment. A statement has been prepared showing in each rase the final repayment of the loan by the operation of the amended ammal instalment so ascertained at the end of the 12th year.

In these statements the amount of the loan has been divided into two parts; the first ($£ 9932 \cdot 74$) being the value of the present investments representing the fund, and the second ($£ 16562 \cdot 26$) being the amome of loan to be provided at the end of the repayment period by the accumulation of the future or amended annual increment, which consists of :-

1. Income from the present investments.
2. The original annual instalment.
3. The additional annual instalment ascertained in the above manner,
thereby proving the accuracy of the results obtained by the deductive method. But the original annual instalment is the only constant factor, although it may in future accumnlate at a lower rate than was originally estimated. Consequently, in arriving at the future or amended annual instalment two variable factors have to be considered, namely, (1) the rate of income upon the present investments, and $(\underset{\sim}{ })$ the rate of accumulation. These two factors of rate per cent. are most important in the after consideration of the problem because they may vary in different directions and are not in any way related. But any difficulty may be eliminated by treating the amount of the future annual income to be received from the present investments, at the future rate per cent. of income, as an annuity certain in the same mamer as the original annual instalment. These two factors together constitute the future or amended annual increment of the fund, which is acted upon by the future rate of accumulation only, consequently the problem has been reduced to an annuity certain for a definite term at a given rate per cent. The annual income from the present investments, included in the present annual increment in all adjustments made by this method, is the annual amount which has been received in the past and is not the future annual income which will be yielded during the unexpired or substituted period of repayment. This is one of the fundamental principles of the annual increment (ratio) method. The enquiry is thereby transferred from the annual instalment to the annual increment, and as this is an annuity of fixed amount it is possible to arrive at a formula, and a rule based thereon. The annal increment has been fully described in Chapter XIV.

In Chapters XIX, XX, and XXI, three rariations in the rate per cent. have been considered, and the amended annual instalment in each case has been ascertained by the deductive method. Up to this point the examples have been considered only as individual problems, but they will now be treated in
combination. In order, however, to aroid undue reference to previous chapters, the following Statement XXII. A. has been prepared containing the whole of the conditions in each case and the actual results previously olbtained.

A further classified Statement XXII. B. has been prepared showing the initial conditions in each case and giving references to methods and calculations by which the results have been obtained. It should again be mentioned that, although in each variation a reduction has been assumed in the rates per cent., as being more likely to occur in practice, yet the same principles and methods will apply equally to an increase in both rates per cent., or to an increase in one rate and a reduction in the other.

Statement X XII. A. (page 265) contains full details of the amended annual instalments found by the deductive method in the three Variations A, B, and C , which are derived one from the other and from the original conditions by gradual rariations in the rates of income and accumulation. There is therefore a definite relation between the original annual increment of £1027.882 and the successive annual increments in Variations A, B, and C , leading to the final amual increment of $£ 1093.909$ in Variation C. This relation depends upon the respectire rates of accumulation in the four examples, and by this means it is possible to derise the rule and formula required. Statement XXII. B. contains the anuual increments only, and shows the rates per cent. of income and accumulation in each case. All these annual sums are derived from a common source, and therefore may be treated as simple annuities for a term without reference to any principal sum or other factor than the rate of accumulation. In Statement XXII. B. the rariations in the rate per cent. are divided into two classes depending upon the rate of accumulation. The first class contains the problems in which the rate of accumulation remains unaltered, and there is not therefore any necessity to sub-divide the class as regards any rariation in the rate of income on the inrestments, hecause, as ascertained in considering Variation 13 , there is not any question of compound interest involved. It is only necessary to correct the original ammal instahment by adding to or dedueting therefrom the difference between the annual amounts of income yielded by the present investments at the past and future rates respectively. The second class includes cases in which there is a variation in the rate of acemmation, and this (hass may be sub-divided aceording as the rate of income upon the present investments is unaltered or is varied. Although it
will be found that both sub-divisions of this class may be treated by one and the same rule and formula, the present distinction is useful in giving emphasis to the fact. It will also be seen, in dealing with problems in which there is a change in the rate of income upon investments as well as in the rate of accumulation, Chapter SXI, that the reason why the rule applies is not so obvious as in the case of a simple variation in the rate of accumulation only.

Class I. I'ariations in the rate of income from incestments only, the rate of accumulation remainimg umaltered.
Problems of this nature, in which the variation affects only the rate of income on the present investments, but in which the rate of aceumulation remains the same, have been fully deseribed in Chapter IX, Variation 13. The calculation of the amended anmul instalment in such cases may be made by the deductive method, statement XX. A., which applies equally to all manner of variations in the rate per cent. But statement XX. C. shows that the amended ammal instalment may be arrived at by a simple direct method, without calculation, although the deductive method may be used to prove the aceuracy of the conclusions.
Cuass 11. I'ariations in the rate of arcumulation.
This dass has been sub-livided into two groups, as shown in Statement XXII. B. as follows:-
(A) In which the rate of income upon the present investments is unaltered.
(B) In which the rate of income upon the present investments is varied.
Each of these sub-divisions will be considered in detail, taking as examples the figures given in statement XXII. B.

The Rate per cent.

Statement XXII, A.

Yariation A. Rate of accumulation only.
Chapter XIX.
Yariation 13. Rate of income only. Chapter MX.
Yariation C. Rates of aceumulation and income combinct. Chapier XXI.
showing, at the end of the 12 th year, under the original conditions, and under each variation:-
(1) The present, and future or amembed ammal inmemments.
(2) The additimal ammal instalment distinguishing between the loss of income from the present investments, and the reduction in the rate of accumulation.
(3) The provision of the future anmal increment from internal and external sources.

Loan $2 \because 6,495$ ．Amount in the fund at end of 12th year， $69.932 \cdot 7$ ．	Original	$\begin{aligned} & \text { Variation } \\ & \text { A } \end{aligned}$		Variation
Future rate of accumulation ．．．	31	：	3	$2 \frac{1}{2}$
Fature yiold on present investments	： 3 2	31	3	\％
I．Present anmual increment：－ Original instalment	680 23.34	$680 \% 3$.	$680 \cdot 23$	680：234
Income from present invest－ ments at end of loth year， at above rates	$347 \cdot 645$	34.645	297.984	297.984
Present anmual increment which will continue to be atcomulated at reduced rate of accumulation ．．．	102－88：	1027.85%	975018	978218
Additional anmual instalments to make good the loss of in－ terest on present investments and future aremmulations，to be added to the original ammal instalments and pro－ rided out of revenue or rate	Nil	： 2.59%	ぷハ56	115691
Finture ammual increment	102785	1060tit	1060．454	109\％909
II．The abose additional anmual instalments，as compared with the original conditions are made up as follows：				
1．Decrease in income from the present investments	Nil	Nil	$49 \cdot 664$	$49 \cdot 664$
$\underset{\sim}{2}$ ．Derrease in interest on future accomulations due to reduction in rate of arcumulation：－				
Variation A	－	32 592	32.592	32． 592
Variation（＇		－	－	33\％ 435
	Nil	：592	$82 \cdot 256$	115691
III．Fiuture anmal increment to be prorided as follous：－				
A．To loe taken out of revenue or rate：－				
Wriginal annual instalment	680\％ $0 \cdot 4$	6980：2：4	680 $2: 34$	$680 \cdot 24$
Deficienner in future income from presont investments	－－	－．	$49 \cdot 664$	$49 \cdot 664$
Additional anmmal instalment to empernsate for dererase				
in mate of arcommation．．．		3 29.5	：${ }^{2} 59$	60.025
	1950 0×4	718＊	$76 \cdot 490$	895．925
33．Income to be reeceived in future from present invest－ ments	34.648	3trots	29.984	297.984
Future ammal increment	102T－s8\％	10604it	$1060 \cdot 574$	0933909

The Rate per cent.

Class II (A). In which the rate of accumulation is raried, but in which the rate of imcome upon the present investments is unaltered.

The following examples in statement XXII. B. fall under this head:-
(1) In Variation A, as compared with the original conditions, the rate of income is in each case $3 \frac{1}{2}$ per cent., but the rate of accumulation is reduced from $3 \frac{1}{2}$ to 3 per cent. The effect as ascertained by the deductive mothod (Statement XIX. A.) is to increase the anmual increment from $\notin 102 \pi \cdot 882$ to $£ 1060454$. See also Calculation XXII.C. where the same result is obtamed by the annual increment (ratio) method.
(${ }_{2}$) In Vartation (, as compared with Variation B, the rate of income is in each case :' per rent., but the rate of accumulation in Vation 0 is reduced from 3 to ${ }^{2} \frac{1}{2}$ per cent. The effect, as will be seen from Statement XXII. B., is to increase the amual increment from $£ 1060454$ to $£ 109: \% 909$. This adjustment is worked out in detail in C'alculation XXII. D.

Chapter XIX deals very fully with the process of finding, by the deductive method, the amended anmal instalment consequent upon a variation in the rate of accumulation only, taking as an example the original conditions as modified by Variation A. In both cases the present amual increment cousists of : -

$$
\begin{array}{lllll}
\text { Income from investments } & \ldots & \ldots & \ldots & £ 34 \cdot 648 \\
\text { Uriginal amual instalment } \ldots & \ldots & \ldots & 680 \cdot 934 \\
& & & & £ 10: \tau \cdot 88 \div
\end{array}
$$

hat under the original eonditions this ammal increment acemmulated at \boldsymbol{B}_{2} per cent., whereas in Variation A the rate of acemmatation was redteed to ${ }^{3}$ pere rent. This requires an additional ammal instalment of texesge to be set aside out of rement or rate, as fomed by Calculation (XIX) 3. But it is apparent that this represents the defiefeney in the acemmatation

 rent., but by the ratio axisting between the respective amounts of $t 1$ per ammon for $1: 3$ years at those rates. These amounts
are given in Table III in the published tables of compound interest.

The same principle applies to Variation C, as compared with Variation B, as will be seen by the following Calculation XXII. D.

The remarks upon Calculation XXII. C. relating to Variation A, as compared with the original conditions, apply equally to this case.

Class II (13). In which the rate of acrumulation and the rate of income upon the present investments are both raried.
The following examples in Statement XXII. B. fall muder this head:-
(1) In Variation C, as compared with the original conditions, the rate of income is reduced from $: 3 \frac{1}{2}$ to $: 3$ per cent., and the rate of accumulation is reduced from $3 \frac{1}{2}$ to $2 \frac{1}{2}$ per cent. The effect, as found by Calculation XXII. E., is to increase the anmual increment from $£ 102 \cdot-88 \geq$ to $£ 1093909$.
(\mathcal{Z}) In Variation C, as compared with Variation A, the rate of income is reduced from $3 \frac{1}{2}$ to $: 3$ per cent., and the rate of accumulation is reduced from $: 3$ to $2 \frac{1}{2}$ per cent. The effect, as will be seen from Statement XXII. B., is to increase the annual increment from $£ 10604$ ti to $£ 1093 \cdot 909$. This calculation is not worked out in detail, but follows from the premises as a matter of course.
(3) In Variation B, as compared with the original conditions, the rate of income is reduced from $3 \frac{1}{2}$ to 3 per cent., and the rate of accumulation is reduced from $3 \frac{1}{2}$ to 3 per cent. The effect, as will be seen from Statement XXII. B., is to increase the annual increment from $£ 1027 \cdot 882$ to $£ 1060+74$. This calculation, also, is not worked out in detail.

In Calculation (XXII) E the original conditions are compared with Variation C in which there is a reduction in the rate of income from present investments from $3 \frac{1}{2}$ to $? 3$ per cent., or $£ 49 \cdot 664$ per annum : and at the same time a reduction in the accumulation rate from $: \frac{1}{2}$ to $2 \frac{1}{2}$ per cent. Although it is not so obvious as in those cases where there is a variation in the rate of accumulation only, yet the same rule applies, as will be seen by the following considerations. The method is a
combination of those previonsly considered. It resembles Variation A in that the rate of accumulation is reduced, and it is therefore necessary to increase the original annual increment in proportion to the respective amounts of $£ 1$ per amum for $1:$ years at the past and future rates of accumulation, as in Variation A., Calculation XXII. C. It resembles Variation B only to the extent that the actual decrease in the annual increment due to the reduced annual income of $£ 49 \cdot 664$ must be added to the fund as an additional annual instalment to be provided out of revenue or rate. But in Variation B there is not any reduction in the rate of accumulation, as in this case: and in Variation B, therefore, the annual loss of income on the present investments is the actual measure of the deficiency in the annual instalment. In this case there is a reduction in the future income from the present investments accompanied by, and acted upon by, a reduction in the rate of accumulation; consequently if the original annual instalment be increased by the loss of income only, as in Tariation B, the fund will lose the accumulation on that sum due to the reduction in the rate of accumulation. It is clear, therefore, that the original anmual instalment must be increased, not by the actual loss of income, of $\frac{1}{2}$ per cont., or $£ 49 \cdot f 64$, which under the original conditions accumulated at $3 \frac{1}{2}$ per cent., but by a larger ammal amount which, accumulated at $2 \frac{1}{2}$ per cent. only, will at the end of the reparment period amount to the same sum. This question has been rery fully diseussed in Chapter XXI, dealing with Tariation C, which contains a useful Statement XXI. C., which may be consulted in this connection. Therefore, the actual rate per cent. of income from the present investments does not enter into the calculation of the annual increment. which, as shown in Statement XXII. E., is exactly similar in principle to Calculations XXII. C. and XXII. D.

On comparing the whole of the above Calculations XXII. ('., D. and E., it will be seen from the formulee at the heading of each that they all follow the same rule, although the conditions in each are different. It may appear superfluous to include them all, but they will be referred to again in order to illustrate the variations in (1) the period of repayment, in Chapter XXIV, and (?) the period of repayment accompanied by a variation in the rate per cent. of accumulation, in Chapter XXVI.
 adjustments have been made relating to rariations in the rate per cent. of accumulation as follows:-

Class II (A). Variation A from the original conditions,
Calculation XXII. C.
ditto. Variation C from Variation B,
Calculation XXII. D.
Class II (B). Variation C from the original conditions,
Calculation XXII. E.

On comparing them it will be seen that they all follow the same rule, and it will be further noticed that the numerator of the fraction in each calculation (log. 42191205) is the same, and represents the balance of original loan, $£ 16562 \cdot 26$, to be provided by the accumulation of the future annual increment at the respective rates of accumulation in Calculation XXII. ((Variation A) at 3 per cent., and in Calculations XXII. D. and XXII. E. (Variation C) at $2 \frac{1}{2}$ per cent. But in each case the abore numerator ($£ 1656226$, balance of loan) is divided by the amounts of $£ 1$ per annum for 13 years at the above respective rates per cent. of accumulation, which, as shown by C'alculation (XV) 1, is the usual method by which to obtain the sinking fund instalment, as shown in standard calculation form, No. 3x.

The ealculation is the same as if it had been assumed that the present investments of $£ 99: 2 \cdot 64$ had been applied in the redemption of an equivalent amount of loan and an anuual simking fund instalment set aside for the unexpired portion of the repayment period of 19 years to repay the balance of $£ 16562 \times 6$ of original loan.

Calculated in this manner, the annual instahent would be, in Tariation C, Calculation XXII. ('., the annual increment of $£ 1060 \cdot 4 \cdot t$, which is made up of :-

The annual sinking fund instalment of £712-826 plus the interest upon the loans repaid out of the sinking fund which (as pointed out in considering the case of local authorities in Chapter XIII), should be paid into the fund $£ 34 \cdot 648$
$£ 1060474$

The same remarks apply equally to Variation C, as shown by Calculations XXII D. and XXII. E. On comparing these calculations, both of which relate to Tariation C, and referring to Statement XXII. A., the only difference is found in XXII. E.
(Variation C, as compared with the original conditions) which requires an original annual inerement of £1027.882 whereas in XXII.D. it is compared with Yariation
B., which requires an annual increment of $£ 1060 \cdot 4$ r 4

$$
\text { a difference of } £ 32592
$$

whieh is the inereased annual instalment required in Variation A, as compared with the original conditions in consequence of the reduction in the rate of accumulation from $3 \frac{1}{2}$ to 3 per cent. in Variation A. From the above data, as shown by Calculation XXII. C. and the deductive method previonsly described in Chapter XIX relating to Variation A, it is possible to deduce a further method of finding the future or amended anmual instalment conseguent upon a variation in the rate of accumulation accompanied or not by a change in the rate of income to be received upon the present investments representing the fund. This has been called the amual inerement (balance of loan) method, and the rule may be stated as follows:-
(1) From the amount of loan repayable at the end of the original period of repayment (25 years) £2649500
(2) deduct the value of the present investments representing the fund at the time the adjustment is required to be made, namely, at the end of the 12 th year $£ 9932 \cdot 74$
and treat the balance of loan, viz. $£ 1656226$
as an original amomet to be provided at the end of the mexpired portion ($1:$ years) of the original repayment period by means of an annal increment hased upon the future rate of acemmulation.
(4) This, as shown bey ('alculation (XIX) 5, requires an anmal furement to be aremmatated at :3 per fent., of ...
£1060 tit
(5) From this anmal sum deduct the future amual income to be received from the present investments at the future rate per cent., whether unaltered, increased or reduced (in this case) $\pm: 3+6+8$
and the remainder £‘12826
is the future or amended anmal sinking fund instalment to be set aside out of revenue or rate for the unexpired portion of the original repayment period, as ascertained in NLX. A. and XXII. C .

In a later chapter it will be found that the above rule, with modifications in the wording only, may be applied equally to variations in the period of repayment accompanied or not by variations in the rates per cent. of income and arcumulation.

This will be shown in Chapter XXIV dealing with a rariation in the period of repayment only, and in Chapter XXVI, dealing with a concurrent variation in the period of reparment and the rate of accumulation. For this reason the summary of the method at the head of this chapter has been so worded that it will apply to the whole of the problems above refered to.

The Annual Increment (ratio) Method.

Class 11.A. To find the amended annual increment (and therefrom the additional annual instatment) in a sinking fund in which the rate of accumulation is reduced, but in which the income from the present investments, and the period of repayment, remain maltered.
The original conditions compared with Yariation A by the deductive method. Statement XIX. A.

The rule relating to this method is stated at the head of Chapter XXIII.

Required the annual increment to be accumulated for a period of 13 years at 3 per cent., which is erpuivalent to an annual increment of $£ 102 \pi \cdot 88 ?$, to be accumulated for the same period at $3 \frac{1}{2}$ per cent.

Income from investments, $3 \frac{1}{2}$ per cent.
$102 \mathrm{r} \cdot 882\left\{\begin{array}{l}\text { Amount of } £ 1 \text { per annum, } 13 \text { years, } 3 \frac{1}{2} \% \\ \text { Anount of } £ 1 \text { per annum, } 13 \text { years, } 3 \%\end{array}\right\}=1060 \cdot 4$ it
or ly Table III, giving the amounts of $£ 1$ per annum:-

$$
\frac{102 \pi \cdot 882 \times 16 \cdot 11303}{15 \cdot 61 \pi 8}=1060 \cdot 4 \pi 4
$$

Log. Present annual increment ... $102 \mathrm{~T} \cdot 882 \quad 30119434$
add Log. Amount of ± 1 per annum
Table III, 13 years, $3 \frac{1}{2}$ per cent. $16 \cdot 113031 \because 0$ andial
$16562 \sim 642191205$
deduct Log. Amount of $£ 1$ per anmum
Table III, 13 years, 3 per cent. $15 \cdot 61$ is $\quad 1 / 1936196$
Log. Amended annual increment
$\because 0255009$
Amended annual increment 1060454
To find the amended annual instalment:-
deduct the income from investments, :? $\frac{1}{2}$
per renit. 34 r. 648
Amended amnaal instalment ile 826
being Original anmal instalment ... 680 ? 3 ?
Additional annual instalment : $: 2$
712.826

The Annual Increment (ratio) Method.

Class $I I$. A. To find the amended annual increment (and therefrom the additional annual instalment) in a sinking fund in which the rate of accumulation is reduced, but in which the income from the present investments, and the period of repayment, remain maltered.

Variation B compared with Variation (.
This calculation is exactly similar in principle to XXII. C.

The rule relating to this method is stated at the head of Chapter XXIII.
Required the annual increment to be accmmutated for a periond of $1: 3$ years at $2 \frac{1}{2}$ per cent., which is equivalent to an annual increment of $£ 10604 i t$, to be accumulated for the same period at 3 per cent.

Tncome from investments, ? per cent. $1060454\left\{\begin{array}{l}\text { Amomit of } £ 1 \text { per annum, } 1: 3 \text { years, }: 3 \\ \text { Amom of } £ 1 \text { per annum, } 13 \text { years, } \mathfrak{2 1} \%\end{array}\right\}=1093.909$ or by Table III, giring the amounts of $£ 1$ per annum :--

$$
\frac{1060 \cdot 54 \times 15 \cdot 6158}{15 \cdot 14044}=109: 3 \cdot 909
$$

Log. Present annual increment $\ldots \quad 1060.474 \quad 30255009$ add Log. Amount of $£ 1$ per annum

Table III, $1: ;$ years, ${ }^{3}$ per cent. $15 \cdot 6178 \quad 1 \cdot 1936196$
16562×662191205
deduct Log. Amount of $£ 1$ per annum
Table III, 13 years, $2 \frac{1}{2}$ per cent. $1514044 \quad 1 \cdot 1801386$
Log. Amended annual increment $\quad 3 \cdot 0389819$
Amended annual increment $1093 \cdot 909$
To find the amended ammal instalment:-
deduct the income from investments, :;
per cent. $297 \cdot 984$
Amended annual instalment $\quad 995925$
being Original ammal instalment ... $762 \cdot 490$
Additional annual instalment 39435
795925

The Rate per cent.

Calculation XXII. E.

The Annual Increment (ratio) Method.

Cluss II. B. To find the amended annual increment (and therefrom the additional annual instalment) in a sinking fund in which the rate of acrummation and the income from the present investments are both reducerl, but in which the period of repayment remains unaltered.

The original conditions compared with Variation C.
The rule relating to this method is staterl at the head of Chapter XXIII.
Required the anmual increment to be accumulated for a period of 13 years at $2 \frac{1}{2}$ per cent., which is equivalent to an anmual increment of $£ 1025 \cdot 882$, to be arromulated for the same period at $3 \frac{1}{2}$ per cent.

The rate of income from investments is reduced from $: 3 \frac{1}{2}$ to $: 3$ per went.
$1027 \cdot 882\left\{\begin{array}{l}\text { Amount of } £ 1 \text { per ammm, } 13 \text { years, }: \frac{1}{2} \\ \text { Amount of } £ 1 \text { per annum, } 1: 3 \text { years, } 2 \frac{1}{2}\end{array}\right\}=109: 909$ or by Table III, giving the amounts of $£ 1$ per annum : -

$$
\frac{10: 2 \cdot 882 \times 16 \cdot 1130: 3}{15 \cdot 14044}=1093: 909
$$

Log. Present annual incremeut ... 10278S: 30119434
add Log. Amount of ± 1 per annums
'Table III, 13 years, $3 \frac{1}{2}$ per cent. $16 \cdot 1130: 3$ 1•20:1irl
$16562064 \cdots 191205$
deduct Log. Amount of $£ 1$ per annum
Table III, 13 years, $2 \frac{1}{2}$ per cont. $15140+4 \quad 1 \cdot 1801: 386$
Log. Amended annual increment
30389819
Amended annual increment 1093.909
To find the amended annual instalment:--
deduct the income from investments, : per cont. $. . . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad$.

Amended anmual instalment 095925
being Wriginal ammal instahment ... Giso 2 :3t
Additional ammal instalment 115091

CILAPTER XXILI.

SINKING FUND PROBLEMS, RELATING TO TLIE RATE PER CENT. OF ACUUMULATIUN (Continued).

Derivation of a rule and formula relating to a variation in the rate per cent. of aceumulation based upon tire FOREGOING RESULTS BY THE ANNUAL INCREMEXT (RATIO) METHOD.

The Annual Increment (ratio) Method.

The rule as to " cariation in the rate of necamulation may be stated as follows, using the terms as explained at the head of Chapter NXII. Statement XXIL.C.

Rule. To find the amended annual instalment to be set aside, and ulded to the existing sinking fund,
to be atcumulatod in future at a rute per cent. greuter or less than the rate at which the pressent ammal instalment was raleulated
(the future rate), and to be set aside during the uncrpired portion of the original repayment period.
(the umexpired period).
Proceed as follows:-
(1) Iscertain the present ammal increment of the fund, as described in Chupter SXII.
(2) Multiply the annual increment so found by the amount of $£ 1$ per amum. at the pust rute for the unexpired period.
(3) Divide the above product by the amount of $犬 1$ per amuum at the future rate for the same unerpired period.
(4) The amount so found will represent the future or amended annual increment of the fund umler the new conditions. The amended ammal sinking fuml instulment may be found by deducting therefrom the future annual income from the present investments representing the fund.
(j) Prepare a statement showing the final repayment of the loan by the operation of the sinkingy fund under the amended ronditions. Statement TIX. B.
(6) Prepare the usual pro forma necomet previously recommended. Pro forma Account No. r.

This rule will not apply to eases in which the vate of income on inrestments only is raried. such problems may be solred by the simple direct method, without calculation, described in Chapter SX, statement (. It is imperatice, in using this method, that the future rate of acrumulation and the rate of income upont the prescnt incestments shall be uniform during the whole of the waerpired portion of the period of repayment.

The Annehl Increment (ratio) Memhod. Verication of a rule and formula relating to a variation in the rate per cent. of accumulation. The previons ehapters illustrate the various methods of atjusting the anmual sinking fund instalment in consequence of all possible combinations of changes in the rates per cent. of income and aceumulation, with the result that the variations have been divided into two broad groups dependiug mpon the future rate of acommulation, as shown in Statement XXII. B. All variations relating to the rate of income and accumulation may be adjusted by making the calculation hy the deductive method described in chapter MIX, but where the variation affects only the rate of income upon investments, and the rate of areumulation remains maaltered, the deductive method is superftuous and may be replared by the more simple direct mothod without calculation, as desrribed in ('hapter XX, Statement $\mathrm{IX} .($. The variations affecting the rate of arermulation hare been divided into two sub-e lasses aceording as the variation in the rate of aremmolation is aceompanied or not hy a change in the rate of income upon the present investments.

The effere of a variation in the rate of income rupon the present investments has beren eliminated by ascertaining the actual amoment of subh income ho be vielded ammally in future, and treatinge tho same as an ammonity to be paid into the fund and arermmulated aloner with the amended annual instament. These two dumat sums havo been combined under the term anmual increment whirh is areted upon her the rate of acemmulation only, and the mquiry is therefore comfined to the rate of aceromulation.

By this method the original anutal instahment, as such, takes only a minor place in the caleulation which is made in terms of the annual increment. Having found the future or amended annual increment required, under the new conditions, to be paid into the find and accumulated for the unexpired portion of the original repayment period, the future annual income from investments is deducted therefrom in order to ascertain the future or amended annual instalment to be set aside out of reveuue or rate. The difference between this amended instalment and the original instalment is the additional annual charge to revenue or rate due to the variation in the rates of both income and aceumulation.

Having reduced all problems to terms of the present anmual increment at the date of making the adjustment, it is found that this annual sum must be increased or reduced in a definite ratio depending upou the original and amended rates of accumulation. If it be required to ascertain the respective amounts of prineipal which will provide a given annual sum in perpetuity at two varying rates per cent., they will be inversely proportional to the respective rates. But if it be required to find, as in the problems now under discussion the respective anuuities which will amount to a given sum at the end of a given term at varying rates per cent., the element of accumulation enters into the calculation, although the resulting anuuities are still, in a sense, in iuverse ratio to the rates per cent. Very little consideration will show that the ratio, instead of leeing expressed in torms of the actual rates per rent., must be expressed in terms of the amoments of $£ 1$ per annum at the respective rates per cont., looth for a number of years equal to the unexpired portion of the period of remyment. This later provision is important; it is not the factor (R) so often used (which is $£ 1$ increased by interest for one year) but $\frac{\mathrm{R}^{\mathrm{N}}-1}{r}$, in which N represents the number of years in the unexpired portion of the repayment period, and which expresses the amount of an annuity of $£ 1$ in any number of years, as shown in Chapter VI, dealing with Table III. In the previous discussion of the subject in Chapter XXII this method has been applied to three of the examples previously considered, and results have been obtained identieal with those found by the deductive method. These results are shown in C'alculations XXII. C., D., and E. On referring to these calculations it will be seen that in each case the actual working is prefaced by a formula commencing with the present annual inerement
at the time the adjustment is required to be made, which annual increment is multiplied by a fraction. In all cases the numerator of this fraction is the amount of $£ \mathrm{I}$ per amum at the past rate of accumulation governing the above annual increment u_{p} to the time of making the adjustment. The denominator of the fraction is, in each case, the amount of $£ 1$ per anumm at the future or substituted rate of accumulation which will govern the future or amended annual increment required.

The following table will make the matter clear and will be useful for future reference when considering the question of a variation in the rate per cent. of accumulation accompanied by a variation in the period of repayment. It shows the respective variations in the rate of accmulation in the examples previously used to illustrate the derivation of a rule and formula applying to all such variations, namely, the annual increment (ratio) method:-

A mount of $\not \subset 1$ per annum,
for 1:3 years.
Numerator. lenominator.
Calculation.
XXII. C. : : $\frac{1}{2}$ per cent. 3 per cent.
XXII. D. NXII.E
$\because \quad$,

,
,

$: 3 \frac{1}{2}$ per cent.	3	3 per cent
$: 3$,	$2 \frac{1}{2}$
$: 3 \frac{1}{2}$,	$2 \frac{1}{2}$
	,	

In the whole of the progressive examples used to illustrate the consideration of the general question of rariations in the rates per ceut. of income upon investments and of accumulation, a gradual reduction in both rates has been assmed. It has been frequently pointed out that the methods already adopted will apply equally to an increase in such rates, and an inspection of statement XXII. B, will confirm this. It will be seen later, in Chapter XXVI, when considering the question of a rariation in the rate of accumulation, complicated by a rariation in the period of repayment, that the same rule hokls good, seeing that the numerator of the fraction is always based upon the past rate of accumulation, and the denominator upon the future rate.

A rule and formula may now be stated, based upon the foregoing considerations and upon ('alculations XXII. ('., D., and E., for finding by direct alculation from the present anmual increment (not the annmal sinking fond instalment) the future or amended anmual increment the to a variation in the rate of accumulation, whether aceompanied or not by a variation in the rate of income upom the investments representing the
fund at the time of making the adjustment. In stating the rule and formula relating to a rariation in the rate of accumulation in this chapter, as well as the rules relating to a variation in the period of repayment in Chapter SXI, and a concurrent variation in both period and rate of aceumulation in Chapter SXVI, the abbreviated terms which are giveu at the head of Chapter XXII will be used, as follows:-

The Past liate denotes the rate of acemulation upon which was based the original anumal instalment included in the present anuual increment.

The liuture Rate denotes the rate of accumulation to be used instead of the past rate, to calculate the amended annual increment. It will be the sane as the past rate in problems involving a variation in the period of repayment only without any variation in the rate of accumulation.

The Unexpired l'eriod denotes the unexpired portion at the time of making the adjustment of the original repayment period upon which the present or original anmal instalment was based.

The Substituted Period denotes the increased or reduced number of years over which the future or amended annual instalment shall be spread, and at the end of which the full amount of the loan will be repayable. It will be the same as the unexpired period in problems involving a variation in the rate of accumulation only, without any variation in the period of repayment.

The rule as to a variation in the rate of atcumulation only (the annual increment (ratio) methool) is stated in fuil at the head of this chapter.

The above rule is sufficiently explicit, but as it will, in Chapter XXVI, be combined with the rule relating to a variation in the period of repayment, it is expressed as a formula as follows:-

Variation in the Rate of Acctmulition.
The Ammal Increment (ratio) Method.

The amounts of $£ 1$ per ammom in the above rule and formula are at varying rates per cent. of accumulation, but are for the same number of years.

Calculation XXII. C. will now be expressed in terms of the above formula, but in this case the problem will be inverted to apply to an increase in the rate of accumulation instead of a decrease, as follows:-

$$
1060 \cdot 4 \pi 4 \times\binom{ 15 \cdot 61 \pi i 9}{16 \cdot 1130: 3}=102 \tau \cdot 882
$$

In Chapter XXVI this calculation will be combined with the similar calculation shown in Chapter XXV, but relating to a variation in the period of repayment.

It will be noticed that the above rule, and the formula expressing it, do not contain any reference to the future rate of income to be yielded by the present investments representing the fund, and that the sole governing factor is the varying rate of accumulation. This rule and formula will apply equally to an increase or decrease in the future rate of accumulation, and it is important to remember that an increase in the rate of accumulation will cause a reduction in the amnual instalment to be charged to revenue or rate account in future years; an increase in the repayment period will, on the other hand, involve a decrease in the future ammal instalment.

The object of expressing the above rule in formula form will be seen later in Chapter XXV, when discussing the adjustment of the ammal instalment in consequence of a variation in the period of repayment only, and also when discussing, in Chapter XXIT, the adjustment in the anmal instalment due to a variation in the period of repayment accompanied by a variation in the rate of arcumulation.

In Chapter XXVI both the above formule will be combined, but in this case Calculation XXII. ('. will be used in an inverted form in order to ohtain an example of an increase in the rate of acemmulation from 3 to $: \frac{1}{2}$ per cent. which will be used as the hasis of Calculation XXYT. ©.

On comparing the above formula with the formula in Chapter XXV, relating to a variation in the period of repayment, it will be noticed that the denominator in the abowe formula is the same as the mumerator in the formula in ('hapter XXY.

CHAP'TER XXIV.

SANKING FUND lROBLENS, RELATING TO TIIE redemption period.

A valiation in the period of repathent with or without any variation in the rates per cent. of incone or accumulation. Sumiary of methods. Gexeral considerations as to the redemition period. The deductive method. The annull incriment (ratio) method, and the andeal increment (balance of loas) hethod. Statement nhowing the final repayent of the loan by the oper.tiox of tie mexded nyyal instalaext.

Summary of the methods of adjustment.

(I) The deductice method, as summarised belou (see note).

Statement S.XII. I.
(II) The direct methoul, without calculation, ass summarised at the hocad of Chapter NX , will not apply to this rariation.
(III) The anmual increment (balance of loan) method, as summarised at the lecad of Chapter X.YIL.

Statement XIIV.リ.
(11) The annual increment (ratio) method, as summarised at the head of 'hapter S.II'.

Statement IXIV.C.
Note. The terms ased in the following summary are fully explained at the head of chapter IXII. The deductive method summarised below relates only to a ratution in the period of repuyment, and is of limited applicution, in that the rates of accumulation and of income from incestments are both the same and remain unaltered. The mothod described in Chapter XIS is more generally "pplicable, and should be followed in all cases.

Summary of the deboctive method, of ascertaining the amended annual sinking fund instalment due to a variation in the period of repayment only, without any rariation in the rates per cent. of accumulation or of income from the present investments representing the fund, both of whieh must be the same.

Statement XXIV.A.
(1) Ascertain the value of the present investments as previously described.
(:) Calculate the amount thereof, if arcumulated for the substituted repayment period at the past unaltered rute of accumulation.
(ialrulation (XXIV) 1.
(.) Calrulate the amount of an anmuity equal to the fresent or original annual instalment for the substituted period at the past unaltered rate of arrumulation.

C'alculation (土\IJ) :.
(4) The amount found in (:) added to the amount foumd in (3) will represent the amount of origimal loan which will be provided thercby at the end of the substituted period of repayment.
(5) Deduct the sum found in (t) from the amount of original loan, and the remainder represents the portion of original loan which will be unprovided for by the accumulation of the present incestments and the present or original annual instalment at the past maltered rate of accumulation.
(6) C'alculate the additional annual sinking fund instalment which at the past unaltered rate of accumalation will amount. to the balance of loan found in (5) at the end of the substituted period of repoyment.

C'alculation (IXI[) :'.
(9) The additiomal ammund instalment foumd in (6) adeled to the original or presemt ammual instalment, as in (.3), gives the future amended ammual instulment to be set aside amil added. to the fumd during the sulsstituted preriod of repayment.
(s) Prepare a statement showing the fund repuyment of the loan by the operation of the fund under the wamended conditions.

Statemont K.V/V.B.
(9) Prepare a pro forma aroount showing the amonnt which should be in the fund at the eme of earll yeter of the substituted repuyment period.

Pro format Areount, No. 10.

Nemo. Tha' "bowe method will apply equally to an increase or reduction in the period of repayment.

General Consideritions. It very rarely happens that there is any alteration in the period originally allowerd for the repaymeut of any individual loan of a local. authority. It may be taken as a general rule that in the special or general Act, provisional order, or sanction of the Local Government Board, authorising the expenditure and the consequent horrowing, there is a specified period imposed for the final repayment of the loan out of revenue or rate, and this period is strictly adhered to. The Local Government Board have power under the Local Government Act, 1888, and the Public Health Acts Amendment Act, 1890, to extend or vary the periods within which loans may be discharged, but this power is limited to the consolidation of debt, and the exercise of such power is therefore confined to the equation of the repayment periods of the several loans so eonsolidated. The discussion of this part of the subject will be deferred to Chapter XXXIT, where it will be fully considered. It is different with the sinking funds set aside to repay the loan deht of commercial or financial undertakings. In these cases the conditions are much more elastic than in the case of local authorities, and almost every kind of variation is met with in practice. These problems may arise at the time the sinking fund is inangurated in order to meet any sperial obligations imposed at the time the loan is arranged, or to meet any future contingency, which it is anticipated may arise during the continuation of the fund. It may also happen that events occur after the fund has been in operation for some years which require that the period of repayment shall be increased or reduced, and any alteration in the period may be, and generally is, accompanied by a rariation in the rate per cent. of accumulation. Any variation in the rate of interest payable to the loan holders rarely affects the sinking fund instalment, and may generally be ignored, but in all questions of this nature it is most important to ascertain the whole of the conditions in order that the proper adjustment may be made.

Tife Methods of Anjustment. The deductive method. Although a shorter method has been found of making the adjustment in the annual instalment, in the present instance the derluctive method will again be first used, afterwards making the same adjustment by the methods described as the annual increment (ratio) method and the annual increment (hatance of loan) method.

In this chapter the rariation will be assumed to relate only to the period of repayment without any complication arising in consequence of a variation in the rate of accumulation or of income upon the present investments. In the following chapter (XXV) the annual increment (ratio) method will be reduced to a rule and formula relating to the period of repayment only, in a similar manner to that adopted in Chapter XXIII, relating to the rate of accumulation. It will, however, sometimes happen that an adjustment is recpuired to be made owing to a coneurrent variation in the rate of income to be received from the present investments and also from the investment of the future accretions to the fund, and these again may be at different rates. All questions arising out of a variation in the rate per cent. generally, have heen considered in previous chapters, and the adjustment due to a simultancous variation in both period and rate per cent. will be deferred to Chapter XXVI.

The present problem will be illustrated by the now familiar example of the sinking fund already discussed, which relates to the repayment of a loan of $£ 26,495$ at the end of 25 vears, requiring an annual instalment of $£ 680 \times 34$, to be set aside and accumulated at $3 \frac{1}{2}$ per cent., as found by Calculation (XV) 1.

Circumstances have arisen which impose upon the undertaking the necessity to accelerate the final redemption of the loan indebtedness by the operation of the fund. It is not necessary to enquire into the special reason for such acceleration because the principle is the same in any event. The adjustment will again be based upon the position of the fund at the end of the 12 th year. The undertaking or company was originally required to repay the loan of $£ 26,495$ at the end of the 25 th year, namely, in 19 years from the present time, and, towards this, there is in the fumd the proper calculated amount, which
 Calculation (KV^{\prime}) 2 , vielding an assured future annual income, at $3 \frac{1}{2}$ per cent., of $£ 34 \% \cdot 64 \Omega$. The altered conditions demand that the operation of the fund shall be accelerated and that the original anmal instalment shall be increased to such an amount as will repay the loan in $\&$ years from the present time instead of at the end of 13 years thereby redueing the original repayment period from 25 to 20 years.

This reduction in the period affects the future accumulation of the ammal instament of $£ 680$ ent, as originally calculated. and also the future accumulation of the amount of £9939.it now in the fund. Tn order to compare the resulting increased
annual instalment with the original instalment it will be assumed that the original estimated rate of accumulation, namely, $: 3 \frac{1}{2}$ per cent., will continue to be received during the remaining 8 years, both as regards the income from the present investments and the amended anuual instalment.

All the present factors will be again reduced to equivalent amounts of original loan which will be provided at the end of the substituted period of 8 years by the accumulation of such factors in order to ascertain, by the deductive method, as shown in Statement XXIV.A., the portion of original loan which remains to be provided by an additional anmual instalment. If the rate of accumulation remains unaltered the reduction in the period of repayment will have the effect of increasing the annual instalments as originally calculated. If, on the contrary, the unexpired period of 13 years be extended instead of reduced, there will be an apparent surplus in the fund which will lead to a reduction in the annual instalment.

The additional annual instalment required, as shown in Statement XYIY. A., by the deductive method, is $£ 801 \cdot 862$. The balance of loan, $£ \sim 258 \cdot 21$, shown in Statement XXIY. A., which will be unprovided for owing to the reduction in the redemption period from 13 years to S years is made up as follows:-

Present investments £9939•4
Amount thereof, accumulated for $1: 3$ years at $3 \frac{1}{2}$ per cent.

Calculation (XVII) $\mathfrak{£ ~ £ 1 5 5 3 4 3 8 ~}$
Amount thereof, accumulated for 8 years at $3 \frac{1}{2}$ per cent.

Calculation (XXIV) $1 \quad £ 13079.53$
$£ 2454 \cdot 85$
Original annual instalment:-
Amount of $£ 680 \sim 234$ per annum, accumulated for 13 years at $3 \frac{1}{2}$ percent. Calculation (XV) $\overline{5} \quad £ 109606 \mathcal{Q}$
Amount of $£ 680 \sim 29$ per annum, accumulated for 8 years at $3 \frac{1}{2}$ percent. Calculation (XXIV) $\underset{\sim}{2} \quad £ 6157 \cdot 26$

It has thus been ascertained that the ultimate amount of loan which will be unprovided at the end of the substituted period in conseguence of the reduction in the original redemption period is $£ 225821$, and this deficiency has been divided between the accumulations of the present investments and of the original anmal instalment. The portion of the deficieney due to the reduced accumulation of the present investments is $£ 2454 \cdot 85$, and has been expressed in terms of the capital ralue, but it may also be expressed in terms of the ammal income of $£ 347648$ to arise from the present investments, as follows:-

Amoment of $£ 347648$ per annum in 18 years at
3 $\frac{1}{2}$ per cent. Calculation (XXIV) $4 £ 5601 \% 6$
Amonnt of $£: 34 \cdot 648$ per anmum in 8 years at
?2 per cent. Calculation (XXIV) 5 £? $146: 81$
£2454•85

Statement XXIV. A. shows that the reduction in the period of repayment from 25 years to 20 years (lont with the same rate of arcimmlation) taking place at the end of the 12 th year. results in an increased ammal burden of $£ 801 \cdot 862$ chargeable against the revenue of the mdertaking. It only now remains to review the operation of the fund under the altered conditions in order to ascertain that the amended annual instalment of $£ 1482.096$ so found will carry out the purpose of the fund, namely, to repay the loan of $£ 26,495$, but at the end of $\mathfrak{2} 0$ instead of 25 years. This is slown in Statement XXTV. B., and hy the proforma account, No. 10.

The Annell Tecrement (ratio) Metion. In previous chapters dealing with each of the variations in the rates per cent. of income and arcumulation, the additional annual instalment was first ascertained by the deductive method, as fully described in Chapter XIX. This method is based essentially upon the ultimate separate aceumnlation at the future rate of each of the present factors of the fund, namely, the annual instalment as originally ealeulated, the value of the present investments, and the future income to arise therefrom, all of which wepe reduced to equivalent amomets of original loan which the will individualle provide at the end of the period of redemption. Th Chapter XXIS the whole of these adjustments were again made be dired calculations hased upon
the annual increment of the fund as defined in Chapter XIS, and it was found that by this means it was possible to simplify the calculation and eliminate altogether the effect of any variation in the rate of income to be received in future upon the present investments representing the fund. It was found that there is an exact ratio existing between the present and future anmal increments depending upon the respective amounts of $£ 1$ per annum; and in Chapter XXIII, relating. solely to the rate of accummbation, this method of calculation was reduced to a rule and formula, called the annual increment (ratio) method.

For the purpose of the following adjustment the present annual increment, which is the basis of the calculation, is made up as follows:-

Original annual instalment	\ldots	\ldots	\ldots	$£ 680 \cdot 234$
Income from prevent investments	\ldots	\ldots	$34 \cdot 648$	

[^1]The above annual income from the present investments, as in all adjustments made by this method, is the amount which has been received in the past, and is not the amount which will be yielded thereby during the substituted period of reparment.

This is one of the fundamental principles of the annual increment (ratio) methord, as fully explained in the opening paragraphs of Chapter XXII. This method will now he applied to a variation in the periorl of reparment, as shown in Calculation XXIV. (.

Tife Annual Increment (balayce of lolix) Methon. It has been found in Chapter XXII, dealing with a variation in the rate of accumulation, that the future or amended annual increment, and therefrom the future or amended annual instalment, may be obtained by deducting the value of the present investments representing the fund, from the total amount of loan repayable at the end of the presmibed period, and treating the balance as an original amount to be provided by an annual sum to be accumulated during the unexpired portion of the original reparment period at the future amended rate of arcumulation. The anuual sum so found is the equivalent of the future or amended annual increment, and the future or amended annual instalment moder the new conditions
is found by deducting therefrom the anmual income to be received in future upon the present investments representing the fund, at any rate per cent. whether increased or reduced. This is the ammal increment (balance of loan) method, and although its derivation is not described until Chapter XXII, it hats been used in previous chapters. Statement XXIV. D. following gives details of the present example worked out by this method.

The Redemption Period.
Statement XXIV. A.

The Deductive Method.

Showing the method of adjusting the annual instalment in consequence of a variation in the redemption period without any variation in the rate per cent. of accumnlation or of income from the present investments, both of which rates are the same.

If these rates are unequal or are varied proceed as in Chapter XIX.A.

Conditions before adjustment, at end of 12 th year :
Amount of original loan, repayable in 25 years
£26,495
Amount in the fund, at end of 12 th year ... $£ 9932 \cdot 54$
Present amual income (previously) received therefrom, at $3 \frac{1}{2}$ per cent., per annum ...
$£ 347 \cdot 648$
Present annual instalment, to be accumulated for $1: 3$ years, at $3 \frac{1}{2}$ per cent. $£ 680 \cdot 234$
Present annual increment £102r•882
Variation from the above conditions :-
The period during which the loan shall be redeemed is reduced from $1: 3$ to 8 years.

The substituted period of repayment $\&$ years.
Equivalent
amount of original loan.
Present investments (at end of 12 th year) $£ 99: 22 \cdot \pi 4$
Amonnt thereof, accumulated for 8 years at $3 \frac{1}{2}$ per cont. ('alculation (XXIV) 1 £130795:
Original annual instalment $£ 680 \% 94$
Amount of $£ 680 \cdot 2: 2+$ per annmm, for 8 years

Provision already made, will repay loan of £19236.79

Additional annual instalment required :-

Balance, being amount of original loan unprovided for, owing to the above decrease in the redemption period requiring an additional annual instalment to be set aside and accumulated for 8 years at $3 \frac{1}{2}$ per cent. ... $£ 225821$
Additional annual instalment
Calculation (XXIT) $3 £ 801 \cdot 862$
Amount of original loan £26495.00

Amended annual increment:-
Annual income from investments... $£: 34 \cdot 648$
Amended annual instalment £148こ・096
£1829:-44

The Redemption Period.

Showng the final repayment of the loan, by the operation of the sinking fund after making the adjustment in the anuual instalment consequent upon a reduction in the period of repayment, without any variation in the rate per cent. of accumulation, or of income from the present investments.

Present investments (at cnd of 12th year) £9932~it
Amended annual increment:-
Uriginal annual instahment £680:2:34
Additional ammal instahment ... $801.86{ }^{\circ}$

Total out of revenue £ 148.096
Income from investments $34 \cdot 648$
Total £1829「44
Amount thereof, accumulated for δ years at $3 \frac{1}{2}$ per cent. Calculation (XXIY) $6 \quad £ 1656 \supseteq \cdot 26$

Amount of original loan £2649500
Amended annual instalment £1482.096

The Redemption Period.

The Annual Increment (ratio) Method.

To find the amended anmal increment (and therefrom the amended anmal instahent) in a sinking fund in which the original period of repayment is saried, accompanied or not by any variation in the rates of accumulation or of income from the present investments.

The rule relating to this method is stated at the head of Chapter MXY.
Required the anmal increment to be accumulated for a period of 8 years, which is equivalent to an annual increment of $£ 102 \cdot 88^{\circ}$, to be accumulated for a period of 13 years, the rate of accumulation in both cases being $3 \frac{1}{2}$ per cent.
$102 \cdot 882\left\{\begin{array}{l}\text { Amount of } £ 1 \text { per annum, } 13 \text { years, } 3 \frac{1}{2} \% \\ \text { Amomit of } £ 1 \text { per annum, } 8 \text { years, } 3 \frac{1}{2} \%\end{array}\right\}=1829 \cdot \tau 4$ or by Table III, giving the amounts of $£ 1$ per annum.

$$
\frac{1027 \cdot 88 \cdot 2 \times 16 \cdot 11303}{9 \cdot 05168}=18: 99 \cdot \tau 44
$$

Log. Present annual increment $\ldots \quad 102 \cdot 682 \quad 30119494$ add Log. Amount of $£ 1$ per annum Table III, 1:3 years, $3 \frac{1}{2}$ percent. $16.113031 \approx 031 \mathrm{it}$
$\overline{1656226} 42191205$
dedurt Log. Amoment of $£ 1$ per anmm Table III, 8 years, $3 \frac{1}{2}$ per cent. $9 \cdot 05168 \quad 0.9567296$

Log. Amended anmal increment $\quad \underline{3 \cdot 29: 9909}$
Amended annual increment $1829 \cdot 7+4$
To find the amended. anmal instalment:-

Amented annnal instahment $1482 \cdot 096$
being Present ammal instalment ... $680020: 4$ Aditional anmial intalment $801 \cdot 86$
$1482 \cdot 096$

The Redemption Period.
Statement XXIV. D.

The Annual Increment (balance of loan) Method.

To find the amended annual sinking fund instalment ensequent upon a variation in the period of repayment with or without any rariation in the rate of income to be received from the present investments or in the rate of aecumulation. For Rule see Chapter XXII.

Amount of original loan (25 years) $£ 26495 \cdot 00$ deduct amount in the fund at the end of the
 Balance of loan £16562206

Amended annual increment, to be added to the fund, and aecumulated at $3 \frac{1}{2}$ per cent., to provide this amount at the end of S years.

Calculation XXIV.C. £1829•744
deduct therefrom income to be received from
the present investments, $£ 9932 \cdot \tau 4$, at $3 \frac{1}{2}$
per cent.
£:347.648

Amended annual instalment £1482096
being Original annual instahment ... $£ 680: 234$
Additional anuual instalment sol-862
£148: 096

Pro forma Sinking Fund Account, No. 10.

A Variation in the Redemption Period.
Loan of $\mathfrak{E} 2(195$, repayable at the end of 25 years.
Showing the final repayment of the loan, by the operation of the increased annual instalment of $£ 1482 \cdot 096$.

Statement XXIV. B. Rate of accumulation, $3 \frac{1}{2}$ per cent.

CLIAPTER XXV.

SINKING FUND PRUBLEDS', RELATING TU THE REDEMP'IUN PERIUD (Continued).

Derivation of a rule and formula relating to a variation IN THE PERIOD OF REPAYMENT BASED UPON THE FOREGOING RESULTS BY THE ANNUAL INCREMENT (RATIO) METHOD.

The Annual Increment (ratio) Method.

The rule as to a variation in the period of repayment, may be stated as follows, using the terms explained at the head of Chapter XXII.

Statement XIIV. C.
Rule. To find the amended ammal instalment to be set aside, and added to the existing sinking fund,
to be aecumulated in future at the same rate per cent. at which the present ammal instalment uses calculated
(the future rate),
and to be set aside for a reduced or increased number of years as compared with the unerpired portion of the original repeyment period
(the substituted period).
Proceed as follows:-
(1) Ascertain the present anmual inerement of the fund, as deseribed in C'hapter X.XII.
(2) Multiply the ammal increment so found by the amount of $\in 1$ per anmum at the future rate for the unexpired period.
(3) Divide the above product by the amount of $£ 1$ per annum, at the future rate for the substituted period.
(4) The amount so found will represent the future or amended ammal inerement of the fund under the now conditions. The amended annual sinking fund instalment may be found by deducting therefrom the future annual income from the present incestments representing the fund.
(5) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended conditions. Statement IXII. B.
(6) I'repare the usual pro forma account previously recommended. I'ro forma Iecount, No. 10, Chapter SXIl.

It is imperative, in using this method, that the future rate of accumulation and the rate of income from the present investment.s, shall be uniform during the whole of the substituted period of repayment.

The Axyual Incremext (ratio) Method. Derication of "rule and formala, relating to a variation in the period of repayment. The subject of enquiry in Chapter XXIII is the derivation of a rule and formula by which to ascertain the future or amended annual increment, and therefrom the amended annual instalment, due to a variation in the rate of accumulation only. The present object is to find a similar rule and formula which will apply to a variation in the period of repayment, and the method to be adopted will be the same in priuciple. In discussing the effect of a variation in the rate of accumulation upon the future or amended annual increment in Chapter XIX, Variation A, the amended annual increment was ascertained by the somewhat roundabout, although instruttive, deductive method there described (Statement NLS. A.). This method was used purposely in order to emphasise the principles involved and to show the effect of the variation in the rate of accumulation upon each of the actual factors of the fund, namely, the present investments, the annual income to arise therefrom, and the original annual sinking fund instalment. This decluctive method of enquiry was again adopted in Chapter XX (Variation B, rate of income upon investments), and the amended annual increment was ancertained as shown in statement XX. A. In 'hapter XXI, the same method was applied to ascertain the amended annual increment due to a dual vartation in the rates per cent. of aceumulation and of income upon insestments (Variation ('), and the result is contained in Statement XXI. A.
('hapter XXII contains a tabular summary (XXII. A.) of the results obtained in all the abore investigations into the effect of variations in the rate per cent. This smmary shows that in each of the abowe cases the original and amended ammal increments bear a restain definite ration one to the other: and
from this ratio it is possible to derive a rule and formula by which to derive the amended ammal instalment directly from the original anmual instalment.

In the above examples the period of repayment remained unaltered, and it has been ascertained that any variation in the rate per cent. of accumulation has the effect of increasing or reducing the present anumal increment in proportion to the ratio existing between the amounts of $£ 1$ per ammum for the unexpired portion of the original repayment period at the past and future rates of accumulation respectively. A similar method will now be applied to the derivation of a rule and formula by which to find the future or amended anmual increment, and therefrom the amended anmal instalment, due to a variation in the period of repayment, the rate of accumnation remaining the same, and it will be demonstrated by means of the results obtained in the example just considered in Chapter XXIV. In this instance there is a present anmul increment, receivable for 13 years, composed of:-

$$
\begin{aligned}
& \text { Uriginal annual instalment... } £ 680 \cdot 294 \\
& \text { Income from present investments } 34 \% \cdot 648 \\
& \text { £ } 1027 \cdot 882
\end{aligned}
$$

and this present annnal increment, if accumulated at $3 \frac{1}{2}$ per cent. for 13 years, is sufficient to provide a definite amount of loan at the end of that time. The above amnal income from the present investments, as in all adjustments made by this method, is the amount which has been received in the past, and is not the amount of income which will be yielded thereby during the unexpired or substituted period of repayment. This is one of the fundamental priuciples of the annual increment (ratio) method, as fully explained in the opening paragraphs of Chapter XXII. For this purpose it is not necessary to know the actual amount of the loan, but the above present amual increment may be treated as a simple ammity cortain, for a period of 13 years, to be accumulated at $3 \frac{1}{2}$ per cent. It is required to ascertain the equivalent annuity or annual increment accumulating at the same rate to repay the same loan, but at the end of a term of 8 years instead of at the end of 13 years. It has already been ascertained, in Chapter XXIV, that this equivalent annual increment is $£ 1829 \cdot 744$. In the case of the previous Calculations XXII. C., D., and E., the
period of repayment remained the same, but the rate of accumulation raried; cousequently the ratio was expressed in terms of the amounts of $£ 1$ per annum at the respective rates per cent., but for the same number of years. In the present instance the rate of accumulation remains unaltered, but the period of repayment is raried. Consequently the ratio is expressed in terms of the amounts of $£ 1$ per annum for the respective unexpired and substituted periods of repayment, but at the same rate per cent. of accumulation.

In the formula in Chapter XAIII relating to a variation in the rate of accumulation, the numerator is the amount of $£ 1$ per annum for the unexpired period at the past rate of accumulation, and the denominator is the amount of $£ 1$ per annum for the same unexpired period at the future rate of accumulation, thus taking as the basis of the ratio the varying rates of accumulation. But as the formula about to be ascertained depends as to its ratio upon the varying periods of repayment, and there is not any variation in the rate of accumulation, the numerator becomes the amount of $£ 1$ per annum at the rate of accumulation common to the two periods for the unexpired period, and the denominator becomes the amount of $£ 1$ per annum at the same rate of accumulation for the substituted period. Substituting the above terms for those in the previous formula, the amended formula is ascertained for dealing with problems involving variations in the period of repayment only, but not at the same time involving any rariation in the rate of accumulation. The rule and formula as to a variation in the period of reparment only will be expressed in the same abbreviated terms used in Chapter XXIII, dealing with a rariation in the rate of accumulation, and these abbreviated terms should be carefully considered. They are fully explained at the head of Chapter XXII. In this case there is not any variation in the rate of accumulation, consequently the past and future rates are the smme, and are, in effect, the past rate. This is important when eonsidering a rariation in the period of reparment ouly, or a concurrent variation in the rate of aceumulation as well as in the period of reparment.

It is therefore necessary to use the term " future rate" in the after consideration of this and the formula relating to the dual variation in rate and period.

The rule as to a variation in the period of reparment only, the ammual inerement (ratio) method, is stated in full at the head of this chapter.

As stated in Chapter XXIII, the above rule is sufficiently explicit, but as it will be necessary in the following chapter to combine it with the previous rule relating to a variation in the rate of accumulation it will be expressed as a formula, as follows:-

Variation in mile Period of Repayment. The Annual Increment (ratio) Method.

$$
\left.\left\{\begin{array}{c}
\text { Present } \\
\text { annul } \\
\text { increment }
\end{array}\right\} \times\left\{\begin{array}{c}
\text { Amount of £1 per annum } \\
\text { at future rate } \\
\text { for unexpired period }
\end{array}\right\} \begin{array}{c}
\text { Amount of £1 per annum } \\
\text { at future rate } \\
\text { for substituted period }
\end{array}\right\}=\left\{\begin{array}{c}
\text { Future } \\
\text { or } \\
\text { omended } \\
\text { annual } \\
\text { inerement }
\end{array}\right\}
$$

The amounts of ± 1 per annum in the above rule and formula are at the same rate per cent. of accumulation, but are for varying numbers of years. In this case the future rate is the same as the past rate. Calculation XXIV. C. may now be stated in terms of the abore formula, as follows:-

$$
1027 \cdot 882 \times\left(\frac{16 \cdot 11303}{9 \cdot 05168}\right)=1829.744
$$

and in Chapter XXYI this calculation will be combined with the similar calculation in Chapter XXIII.

The above rule and formula will apply equally to an increase or reduction in the perior of repayment, and it is important to remember that an increase in the period will have the effect of reducing the annual instalment to be charged to revenue or rate account in future years. When considering the rate of accumulation in Chapter XXIII it was found that an increase in the rate of accomulation will reduce the ammal instalment in future years. In the following chapter (XXVI) the above formula, relating to a variation in the period of repayment will be combined with the formula found in Chapter XXIII, relating to a variation in the rate of accumulation, for the purpose of deriving therefrom a formula which may be applied to a concurrent variation in the period of repayment and the rate of aceumulation.

It will be noticed that the numerator in the above formula, relating to the period, is the same as the denominator in the formula in Chapter XXIII, relating to the rate per cent.

CHAPTER XXVI.

SINKING FUND PROBLEDLS, RELATLNG TO THE RATE PER CENT, OF ACCUMLLATION AND THE REDEMPTION PERIOD IN COMBINATION.

Summary of mefhods. General considerations. The METIODS OF ASCERTAFNING THE AMENDED ANNUAL INSTALMENT DUE TO A VARLAFION IN BOTII THE ABOVE FACTORS IN COMBINATION. 'YHE DEDUCTIVE METHOD, THE ANNUAL INCREMENT (RATIO) METHOD, AND 'FHE ANNUAL INCREMENT (BALANCE OF LOAN) METHOD. NTATEMENT SHOWLNG THE FINAL REPAYMENT OF THE LOAN BY THE OPERATION OF THE AMENDED ANNUAL INSTALMEN'F.

Derivation of a rule and formela relating to a dula VARIATION OF THIS NATURE BASED UPON THE FOREGOING RESULTS, BY THE AN゙XVAL INCREMENT (RATIO) METHOD.

Summary of the methods of adjustment.

(I) The deductire method, as summarised at the head of Chapter XXIV; which may be compared with the method summarised at the head of Chapter N/X.

Statement XXVI. A.
(II) The direct method, without calculation, as summarised at the head of Chapter $X X$, will not apply to this rariation.
(III) The annual increment (balaure of loan) method, as summarised at the head of Chapter NX/I.

Statrment NXVI. II.
(I) The annmal increment (ratio) method, as summarised below.

Statement SXI'I. ('.
Note. The terms used in the followin! smmmary are fully discussed, at the homl of Chapter X.XII. It is imporative, in using the abore mothods, that the fature rate of accomulation and the rute of imbome from the present incestments shall be wnifor"ll during the whole of the substituted period of repayment.

The Annual Increment (ratio) Method.

The rule as to a concurrent variation in the rute of accumulation, as well as in the period of repayment, may be stated as follows, using the terms explained at the heud of Chapter SXII. Statement XXVI. ('.

Rule. To find the amended unnual instulment to be set aside, and added to the existing sinking fund, to be accumulated in future at a rate per cent. greater or less than the rate at which the present annual instalment was calculated.
(the future rate), and to be set aside for a redured or inercased number of years, as compared with the unexpired portion of the original repayment period
(the substituted period).
Proceed as follows:-
(1) Ascertain the present annual increment of the fund, as described in Chapter YYII.
(2) Multiply the annal inurement so found ly the amount of $£ 1$ per anmum at the past rate for the unerpired period.
(3) Divide the above product by the amount of $£ 1$ per anmum, at the fature rate for the substituted period.
(4) The amount so found will represent the future or amended annual increment of the fund under the new eonditions. The amended anmul sinking fund instalment may be fond by deducting therefrom the future annual income from the present investments representing the fund.
(5) Prepare a statement showing the final repayment of the loan by the operation of the fund under the amended conditions. Statement XXTI.B.
(6) Prepare the usual pro forma account previousl!y recommended. Pro forma Acroant, No. 11.

General Considmations. The predominant factor in all problems of this nature is the variation in the period of repayment because its effect upon the amended annual instalment is far greater than that due to the variation in the rate
of accumulation which will generally lie within very narrow limits. For the reasons given in Chapter XXIV, a variation of this two-fold nature will racly arise in connection with any individual loan of a local authority, and if such a problem arises in connection with the consolidation of several such loans it will be complicated by other factors which will render neressary a different mode of treatment, as will be explaned in Chapter XXXII, dealing generally with the equation of the period of repayment.

The principal application of the methods to be diseussed in this chapter will relate to the sinking funds of commercial and financial undertakings, and all the general considerations as to a variation in the period of repayment only, stated in Chapter XXIV, will apply to this example without further reference or amplification.

In dealing with problems which may arise in connection with the sinking funds of local authorities and commercial and financial undertakings, the following important factors have already been discussed, namely:-

1. The amount in the fund.
2. The rate per cent.-
(a) of income upon the present investments.
(b) of future accumulation.
\therefore. The period of repayment.
In discussing the problems relating solely to a variation in the rate per rent. or the preriod of repayment, in each case there has been combined in one factor, "the amual increment," (1) the original or aneuded annual instalment, and $(\underset{\sim}{2})$ the past or future income arising from the present investments representing the fund at the time the rariation occurs in the rate or period.

This ammal increment is fully disenssed and deseribed in (hapters XIV and XXTE. The majority of the examples used to illustrate the above problems rekate to a sinking fund to repay a loan of $\pm 26,495$ at the end of 25 years, and it has been assmmed that the variation, and the eonsequent neressity for adjustment, oceurs at the end of the 1 dhth year in carh case. As regards a variation in the rate per cent., it has been proved that the problem may lo confined, so far as the actmarial calculation is comermed, to the rate of acemmatation. It has also been asemptaned that there is a simple ratio existing
between the original and amended ammal increments due to a variation in both the rate and the periot, and that this ratio is based, not upon the respective rates per cent. of accumulation or upon the number of years in the period of repayment, but upon the respective amomets of $£ 1$ per ammon as follows:-

1. In the case of a variation in the rate of accumulation, upon the amounts of ± 1 per amm for the same period of repayment, but at the respective rates per cent. of aceumulation.

Chapter XXIII.
2. In the case of a variation in the period of repayment, upon the amounts of $£ 1$ per aunum at the same rate per cent. of accumulation, but for the respective periods of repayment.

Chapter XXV.
In the case of variations in the rate per cent. the necessary adjustment has been made, in the first instance, by the deductive method, fully deseribed in Chapter XIX, based upon the whole of the factors governing the fund, after which the result so obtained has been verified by the annual increment (ratio) method based upon the annual increment, as described in Chapter XXII. These results have been utilised to deduce a rule, and a formula expressing the rute, which is fully deseribed in Chapter SXIII.

The enquiry was then extended in a similar manner to an adjustment rendered necessary by a variation in the period of repayment which was considered in Chapters XXIX and XXV, and a similar rule and formula was deduced. In each case it was found that the methods applied equally to an increase or a reduction in the rate of accumulation or period of repayment.

The adjustment consequent upon a dual variation in the rate of accumalation, as well as in the period of repayment, will be fully considered in the present chapter, using the whole of the methods already described, after which a rule and formula relating to the adjustment will be deduced from the results so obtained.

The Deductive Metiod. The present enquiry will also be illustrated by a sinking fund to repay a loan of $£^{〔} 6,495$ at the end of 25 years, but with a rate of accumulation of 3 per ront., requiting an annual instahment of $£ 712826$ to be set aside for the remaining 13 years. This has been ascertained in Chapter XIX, Statement XIX. Λ.

The neressity to make the adjustment arises at the end of the 12 th year, at which time the amomen in the fund is £99:\% 74 , which is represented loy investments valued at that
amount, bringing in an annual income at $3 \frac{1}{2}$ per cent. per annum of $£ 34 \cdot 648$, and it will be assumed that this income is assured for the whole of the mexpired portion of the original repayment period. At the end of the 12 th year, this period is for some reason reduced from 13 years to 8 years, and the rate of accumulation is increased from 3 to $3 \frac{1}{2}$ per cent., as in the original conditions in Chapter XV.

The effect will be that the annual instalment of $£ \sim 12 \cdot 826$ will be increased in consequence of the reduction of the period of repayment, but it will not be increased to such an amount as it would have been if the rate of aceumulation had remained at 3 per cent., and had not been increased to $3 \frac{1}{2}$ per cent. This will be shown later in this chapter in detail, where the amended annual instalment will be divided between these factors. As in previous examples by the deductive method, all the present factors of the fund will be reduced to equivalent amounts of original loan which they will each provide by accumulation at the finture rate of $3 \frac{1}{2}$ per cent., at the end of the substituted period of 8 years, in order to ascertain, by deduction, the portion of oriminal loan which will remain to be provided by the future accumulation of an additional annual instalment to be charged to revenue or rate or deducted from profits, and a final calculation will be made to ascertain such additional instalment.

This is fully shown in Statement XXYI.A., which is similar in principle to previous statements illustrating the deductive method. This statement shows that the reduction in the original period of repayment from 25 to 20 years (but with an increase in the rate of accumulation) taking place at the end of the 12th year results in an increased annual burden of $£ 769^{-2 \pi} 0$ chargeable against the rate account or the revenue account of the undertaking.

It is now possible to review the operation of the sinking fund under the altered conditions in order to ascertain that the amended annual instalment so found will carry out the purpose of the fund, namely, to repay the loan of $£ 26,495$, at the end of 20 instead of 25 rears. This is shown in Statement XXIT. B., which is exactly similar in principle to the previous statements prepared to illustrate the aceurary of the amended anmal instalments found by the deductive and other methods.

Tife Anntal Tycremext (Ratio) Metion. (Rule and Formula.) In ('hapter XXII (a variation in the rate of acommbation) as well as in ('hapter XXIX (a variation in the period of repayment) the actual adjustment has been made by
the annual increment (ratio) method there described, and from the results so obtained the formula relating to the method has been deduced. In both these variations the ratio is a simple one, depending upon the respective amounts of $£ 1$ per annum at the varying rates per cent. in one case and for the varying periods in the other. As the rules and formule relating to the above variations have been already ascertained, it is only necessary in the present instance to revert to those formulæ in order to deduce therefrom a modified formula relating to a combination of the above causes of adjustment, and afterwards to make the calculation iu the manner shown in Chapters XXII. and SXIV. It would appear from the above theoretical considerations that the two formulx may be combined in order to deduce therefrom a simple formula which will apply to all problems in volving a dual variation in the rate of accumulation and the period of repayment. It is therefore necessary to combine the formula relating to a variation in the rate of accumulation given in Chapter XXIII with that relating to a variation in the period of repayment in Chapter XXY. The factors required are:-

1. The present annual iucrement.
2. The past and future rates of accumulation.
3. The unexpired and substituted periods of repayment.

For the purpose of the following adjustment the present annual increment, which is the basis of the calculation, is made up as follows:-
Original annual instalment (Statement MIX. A.) ... £־12.826
Income from present inrestments $34 \cdot 648$
$£ 1060454$

The abore annual income from the present investments, as in all adjustments made by this method, is the amount which has been received in the past, and is not the amount of income which will be yielded thereby during the unexpired or substituted period of repayment. This is one of the fundamental principles of the annual increment (ratio) method, as fully explained in the opening paragraphs of Chapter XXII.

The method of making the adjustment by this method is shown in Calculation XXII. C., at the end of this chapter.

In each of the examples discussed in Chapters XXII and SXIV the original anuual increment was multiplied by the
fractional ratio of $£ 1$ per annum. It is therefore obvious that a combination of the above formula to relate to the dual variation under discussion must be made by multiplying the present annual increment by each fractional ratio in succession. As already pointed out, the numerator in the fractional ratio relating to the period of repayment is the same as the denominator in the fractional ratio relating to the rate of accumulation, which will cancel out when the respective formulae are multiplied together ; therefore the product of these fractional ratios will consist of the numerator of the ratio relating to the rate of accumulation and the denominator of the ratio relating to the period of repayment as follows :-

Variation in the Rate of Accumelation and the Perion of Repifarent.

The Anmual Increment (ratio) IVethod.
I'ariation in Rate. lariation in Period. ('hapter XXIII. ('hapter NXI.

Note. The factors in the above formule which are printed in italies are common to both and will cancel out in the multiplication. Calculation XXYI. C. may now be stated in terms of the above formula in a similar mamer to that adopted in Chapters XXIII and XXI:-

$$
1060 \cdot 474 \times\left\{\frac{15 \cdot 61779}{16 \cdot 11303}\right\} \times\left\{\begin{array}{c}
16 \cdot 11303\} \\
9 \cdot 05168
\end{array}\right\}=1829 \cdot 744
$$

The result is the following simplified formula relating to a concurrent variation in the rate of accumulation and the period of repayment: -

Variatiox in the Rate of Accusiclation and the Period of Repayment.

The Ammal Increment (ratio) Method.

$$
\left\{\begin{array}{c}
\text { Present } \\
\text { annual } \\
\text { increment }
\end{array}\right\} \times\left\{\begin{array}{c}
\begin{array}{c}
\text { Mmount of } £ 1 \text { per annum } \\
\text { at past rate, } \\
\text { for unexpired period }
\end{array} \\
\begin{array}{c}
\text { Imount of } £ 1 \text { per annum } \\
\text { at future rate, } \\
\text { for substituted period }
\end{array}
\end{array}\right\}=\left\{\begin{array}{c}
\text { Future } \\
\text { or } \\
\text { amended } \\
\text { annual } \\
\text { increment }
\end{array}\right\}
$$

The amounts of $£ 1$ per anmum in the above formula are at varying rates per cent., and are also for different numbers of years.

Calculation XXVI. C. will now be expressed in terms of the above formula as follows:-

$$
1060.474 \times\left\{\frac{15 \cdot 61779}{9 \cdot 05168}\right\}=1829.744
$$

It is now possible to state a rule based upon the foregoing formula, using the abbreviated terms set out in full at the head of Chapter XYII, and explained in Chapter XXIII, dealing with the rule relating to a variation in the rate of accumulation. The same terms are used in Chapter IXT, in the rule relating to a rariation in the period of reparment. The rule relating to the variation under review is stated in full at the head of this chapter.

Proof of the aboye Method. The foregoing results which have been obtained by taking both rariations into account will now be proved, and the effect of each rariation will be chown separately, beginning with the variation in the period of reparment. In Chapter XXIV, an adjustment was marle in the annual instalment consequent upon a reduction in the period of repayment from 19 to S years, but without any variation in the rate of accumulation. This reduction in the period involved an ultimate defiriency of loan of £2258.21, requiring an additional annual instalment of $£ 801 \cdot 862$ to be set aside for the substituted period of S years, as shown in Statement XXIV. A. The aceuracr of the calculation was proved by dividing the deficiency in the amount of loan, £2258.21, between the reduced accumulation of the present investments, $£ 2454 \cdot 85$, and of the original amual instalment, $£ 4809.36$.

The future deficiency in the accumulation of the present investments, $£ 245485$, was also reduced to terms of the annual income to arise therefrom.

Although the same method of proof may be applied to the present example the problem will be reduced to terms of the present annual increment of $£ 10604 \pi 4$, and by deducting therefrom the income from investments, $£ 34 \cdot \cdot 648$, included therein, it will be possible at the same time to express in figures the effect upon the additional annual instalment of the reduction in the period of repayment, as distinguished from the effect of the increase in the rate of accumulation.

The calculation will be made ly the annual increment (ratio) method, which is the most eonvenient for the purpose. The problem will be divided into two parts in order to ascertain in the first place the amended anmal inerement due to the reduction in the period of repayment only, on the assumption that the rate of accumulation remained the same, namely, :3 per cent. This amended annual inerement, as shown by the following Statement XXVI. D., is $£ 1862532$, requiring an additional annual instalment of $£ 802 \cdot 058$.

Although it will be necessary to consider the above additional amual instalment of $£ 802058$ later in this chapter, the proof will be continued by taking up the above amended annual increment of $£ 1862532$ in order to ascertain the reduction therein due to the increase in the rate of aceumulation from 3 per cent. to $3 \frac{1}{2}$ per cent. The calculation cannot be made in terms of the above additional annual instalment of $£ 802058$ for the reasons given in Chapter XXII, Calculation XXII. E., beeause the benefit of the accumulation of the income from the present investments at the increased rate of accumulation would be lost. The calculation might be made in terms of each of the above factors, namely the annual instalment and the income from investments composing the ammal increment of $£ 1862 \cdot 532$, but this would involve only increased labour without any corresponding adrantage, seeing that the accuracy of the calculation may be proved by comparing the additional annual instalment to be obtained with that found by the deductive method, and also by comparing the amended ammal inerement with that found previously ly the ammal increment (ratio) method, Caleulation XXVI. C. This method of proof shows the adrantage of the annual increment as a factor even in cases where there is not any variation in the rate of infome from the present invest-
ments．This is shown in statement XXVI．E．at the end of this chapter．

The results obtained by the foregoing calculations may now be summarised in order to prove the accuracy of the previous methods of adjustment．The additional annual instalment of
 by the deductive method（Statement SXVI．A．），and the amended annual increment of $£ 18: 9.74$ in Statement $X X V$ ．E． agrees with that found by the anmual increment（ratio）method （Statement XXII．C．）．Attention may now be drawn to the additional annual instalment so found in order to ascertain the relative effects thereon of the variation in each factor of period and rate per cent．

The original annual instalment accumulated at 3 per cent．before these variations occurred，as shown by Statement XIX．A．，was ．．．．．．．．．

```
む`12•826
```

and the result of the reduction in the period of repayment，taken by itself，is to increase the original annual instalment by an additional annual amount，as shown bey Statement XXYI． D．of ．

$$
\pm 802 \cdot 058
$$

but the effect of the increase in the rate of accumula－ tion is to reduce this ammal amount by．．．．．．£゚ロ・288
learing a net increase in the original annual instalment，as shown by Nitatement XXVI．E． $\begin{array}{llllllllllll}\text { of } & \ldots & £ 6692 \pi 0\end{array}$

Proof of Method（contimued）．The present example has already been compared with that used in Chapter XXIV，to illustrate the effect of a variation in the period of repayment only．It was found by Calculation XXIV．A．that the additional annual instalment in that case was $£ 801 \cdot 862$ ．In the present case，which is complicated by a variation in the rate of accumulation，an additional amual instalment of $£ 802 \cdot 058$ is required．As in both cases the reduction in the period of repayment is the same，namely，from 13 years to 8 years，the two examples may be comnected，bearing in mind，however， that the rate of accumulation in the present instance is？per cent．，and that therefore the annual instalment at the time of making the adjustment is $£ 221 \cdot 826$ instead of $£ 680 \cdot 2 \cdot 4$ ，and
a rate of accumulation of $3 \frac{1}{2}$ per cent．，as in the previous example．（See statement NIX．A．）

In that case it was found by the deductive method（State－ ment SXIV．A）that the ultimate deficiency in the amount of luan to be provided，in consequence of the reduction in the period of repayment，was $\pm 255 \% 1$ ，which requires，as shown by C＇akculation（XXIV）：an additional ammal instalment of $\pm 801 \cdot 862$ to be accumulated at $3 \frac{1}{2}$ per cent．for 8 years．

It is therefore necessary to ascertain the equivalent anmual instalment to provide the same amount of loan，むこごよ $\%$ ，at the end of 8 years，but to be accumulated at 8 per cent．instead of $3 \frac{1}{2}$ per cent．＇This is shown to be $£ 816: 3: 2$ in Statement NXII．F．

Statement MXYI．G．shows that if the additional amual instalment of $£ 516 \cdots:{ }^{\prime}:$ ，as found by Calculation XXVI．F．be adopted，there will，at the end of the substituted period of s years，be in the fund an amount of ± 12604 in excess of the anount actually required to repay the loan；and therefore that the additional ammal instalment of $\pm 816: 3 ?$ must be reduced by an amnala sum which，if accumulated at $: 3$ per cent．，will amount to $£ 12604$ at the end of 8 years，which is the ammal sinking fund instalment which will provide，or the anmuity which will amount to that sum，under the above conditions． By Calculation（ $\triangle X Y I)^{5}$ the amual sum is found to be む゙14゙174。

The correct additional ammal instalment required for the pupose of showing the separate effect of the variation in the period therefore is：－

The abore calculated instalment of ．．．．．．．．．．．．£816：※？
reduced by the above ammuity of \ldots ．．．．．．．．．± 141 it
learing the actual additional ammal instalment of $\pm 802 \cdot 058$
which agrees with the amount fomad by Natement XXVI．D． ly the ammal increment（ratio）method．

The ANodi lachembet（badive of boan）Method．In previous chapters attention has been directed to the princeples moderlying this mothod．It resombles very dosely the practice adopted hy such local antliorities as are able to apply the whole of the ammal instahments towame the immediate artual mamption of deht．In such eases the interest upon the debt
so redeemed, and the future annual iustalments, constitute the annual increment of this method provided the rate of interest upon such redeemed debt is the same as the rate of accumulation. In case there is any variation in these two rates per cent. the annual difference may be transferred as and when it arises to the debit or credit of the revenue or rate account. It is an essential principle of this method that the resulting annual instalment, the future rate of income from the present investments, and the rate of accumulation shall continue without variation during the whole of the mexpired portion of the repayment period. Any departure from miformity in these respects has already been pointed out. Chapter A YI, dealing with the adjustment of a deficiency in the fund contains full particulars of the method of finding the additional ammual instalment to be spread over a portion only of the unexpired repayment period, and Chapter XXVII explains the method of correcting the ammal instalment in eonsequence of a variation in the future rate of income to be received from the present investments, which is expected to occur at a future date during such unexpired period, and a similar method of adjustment will apply to a variation in the rate of accumulation occurring at such a future date.

In dealing with such a future variation in the rate per cent. of income or of acrumulation in Chapter XXYII, a distinction has been drawn between a reduction which, although anticipated, is mucertain both as to rate and time, and one in which both factors are definite, as was the case with the redurtion in the dividend on consols under Mr. Goschen's Finaure Act, 1888. In Chapter XXVII attention is also directed to the difference between the arithmetical and true mathematical methods of arriving at the equated rate per cent., and it is there pointed out that the same difference in such methods occurs in the equation of the period of repayment, as will be fully described in Chapter XXXII. Any variations in the above factors of rate per cent. or period of repayment anticipated to arise during the mexpired portion of the repayment period, whether definite or estimated, are met hy finding the amount of an annuity by the method "by step," fully described in Chapters XVI and XXIII, both of which contain a description of the longer atw well as the simplified method of such calculat tion.

The following Statement, XXVI. II., shows the method of proving the previous results by the annual increment (balance of loan) method.

The Redemption Period and
 Statement XXVI．A． The Rate per cent．

The Deductive Method．

Showing the method of adjusting the annual instalment in conseguence of a variation in the period of repayment accompanied by a variation in the rate of accumulation， the rate of income from the present investments being maltered and being the same as the future rate of accumulation．If these rates are mequal or are varied proceed as in Chapter XIX．

Conditions before adjustment（at end of 12 th year），
Amount of original loan repayable in ${ }^{2} 5$ years ．．．£゚ 6,495

Present annal income（previonsly）rereived there－ from at $: 3 \frac{1}{2}$ per cent．per annum ．．．．．．．．．$£ 34$ r＇ 648
Present annual instalment，to be accumulated for
$1:$ years，at ：3 per cent．．．．．．．．．．．．．．．．むっ12．826
Present annual increment ．．．．．．．．．．．．．．．．．．£1060．4i4

Variation from the above conditions ：－

The period during which the loan shall be redecmed is reduced from $1: 3$ to 8 years，and
the rate of aremmuation of the fund is increased from ：${ }^{\prime}$ to 32 per cent．

The substituted period of repayment \ldots s years．
The future rate of arcomulation ．．．．．． $3 \frac{1}{2}$ per cent．

Present investments (at end of 12th year)	Equivalent amount of original loan.
Amount thereof, accumulated for 8 years at $3 \frac{1}{2}$ per cent. ('alculation (XXIV) 1	£13079:5\%
Present annual instalment £ヶ12 826	
Amount thereof, accumulated for S years at $3 \frac{1}{2}$ per cent. Calculation (XXVI) 1	$\pm 6452 \mathfrak{d}$

Provision already made will, at the end of 8 years, repay loan of $£ 19531$ \&1

Additional annual instalment required : -

Balance, being amount of original loan moprovided for owing to the above reduction in the period of repayment from $1: 3$ to 8 years, but reduced in consequence of the increase in the rate of accumulation from 3 to 32 per cent., requiring an additional annual instahment to be set aside and accumulated for 8 years at $3 \frac{1}{2}$ per cont....

[^2]Additional annual instalment

Amount of original loan £. £649500

Amended annual increment, being :-
Annual income from investments ... $£: 34 \cdot 648$
Amended ammal instahment $1482 \cdot 096$
£1829.744

The Redemption Period and The Rate per cent．

Showing the final rephimest of the lons，by the operation of the sinking fund，after making the adjustment in the annual instalment consequent upon a rariation in the period of repayment accompanied by a variation in the rate of aceumulation．

	Equivalent original Ioan
Presentinvestments（at end of 12th year）	む99：\％「」

Amended annual increment：－

$$
\text { Present annual instalment む〒12.82 } 6
$$

$$
\text { Additional amual instalment ... } \quad 669 \cdot 20
$$

Total out of revenue ．．．．．．$£ 148.096$
Income from investments ．．．．．．3ti． 648

$$
\pm 18: 9.744
$$

Amount theroof，areumulated for 8 years at

Amount of wiginal loan ．．．．．．．．．£2649500

Amended annual instalment ．．．£14ぷ096

The Redemption Period and Calculation XXVI. C. The Rate per cent.

The Annual Increment (ratio) Method.

To find the amended ammal increment (and therefrom the amended ammal instalment) in a sinking fund, in which there is a variation in the period of repayment acrompanied by a variation in the rate of acrumulation, with or withont any variation in the rate of income upon the present investments.

Required the ammal increment to be accumulated for a period of 8 years at $: \frac{3}{2}$ per cent., which is equivalent to an ammal increment of $\mathfrak{x} 1060 \cdot 4 \mathrm{f}$, to be acemmulated for a period of $1: 3$ years at 3^{3} per cent.
$1060 \cdot 474\left\{\begin{array}{c}\text { Amount of } £ 1 \text { per ann., } 1: \% \text { years, }: 3 / \\ \text { Amount of } £ 1 \text { per ann., } 8 \text { yeirs, }: 3 \frac{1}{2} \%\end{array}\right\}=18: 29 \cdot 74$
or loy Table III, giving the amomits of $£ 1$ per ammum

$$
\frac{1060.474 \times 15 \cdot 61779}{9 \cdot 05165}=1829 \cdot 7.44
$$

Log. Present annual inerement ... $1060 \cdot 474 \quad 3 \cdot 0255000$ add Log. Amount of $£ 1$ per amnum

Table III, 13 years, 3 per cent. 15'61759 1•19:36196
$1656 \approx \approx 26 \quad 4 \approx 191196$
deduct Log. Amonnt of $£ 1$ per annum Trable III, 8 years, $3 \frac{1}{2}$ per cent.

$$
3 \cdot 05169 \quad 09567296
$$

Log. Amended annual increment
$3: 2623900$

Amended amual increment
$1829 \cdot 744$
To find the amended anmual instalment:
deduct the income from investments, $: 3 \frac{1}{2}$ per cent.

Amended ammal instalment
$148: 096$
beiny Present ammal instalment... 712808
Adhional ammal instalment 769×20
1480096

The Redemption Period and Statement XXVI. D. The Rate per cent.

The Annual Increment (ratio) Method.

Required the ammal increment to be aceumulated for a period of 8 years at :' per cent., which is equivalent to an annual increment of $£ 1060454$, to be accumulated for a period of $1: 3$ years, also at $: 3$ per cent.

To show the separate effect of the variation in the period.
Present annual increment $\quad . . \quad . . \quad 1060474$ 3.0255000
multiply by amount of $£ 1$ per ammom, 1: y years, :; per cent. 1561i79 1•19:36196
$16562 \cdot 26 \quad 4 \approx 291196$
divide by amount of $£ 1$ per
annum, \& years, $: 3$ per cent. ... 8.89234 09490159

Log. Amended amual increment 3.27010:37

Amenderl ammal increment $18625: 9$
bemy Income from investments ... $3+6 \cdot 648$
l'resent anmual instahment... ilw 226
Additional ammal instalment sose 05
18605%

The Redemption Period and Statement XXVI. E. The Rate per cent.

The Annual Increment (ratio) Method.

Required the annual increment to be accumulated for a period of 8 years at $3 \frac{1}{2}$ per cent., which is equivalent to an annual increment of $£ 1862532$, to be accumulated for a like period of 8 years, but at :' per cent.

To show the separate effect of the variation in the rate per cent.
Present aunual increment $1862 \cdot 532$ 32701037
multipl! by amount of $£ 1$ per annum, 8 years, :' per cent. ... s.892:3t 09490159 $16562 \sim 26 \quad 4 \approx 191196$
dicide by amount of $£ 1$ per
annum, 8 years, $3 \frac{1}{2}$ per cent.... $9.05169 \quad 0.9565296$

Log. amended amual increment $\quad 32623900$
Amended anual increment 189974
$\begin{array}{rlrl}\text { beiny Income from investments } . . & 34 \cdot 648 & \\ \text { Present annual instalment } \ldots & \pi 1 \cdot 826 & \\ \text { Additional annual instalment } & 769 \cdot 2 \pi 0 & \\ & - & 1829 \cdot 744 \\ & & & \end{array}$

The Redemption Period and The Rate per cent.
 Statement XXVI. F.

 The Annual Increment (ratio) Method.Required the amual instalment to be arcumulated for a period of 8 years at $: 3$ per cent., which is equivalent to an annual instalment (as in XXIV. A.) of $£ 801 \cdot 862$, to be accumulated for a like period of 8 years, but at $: \frac{1}{2}$ per cent.

Present annual instalment multiply $b y$ amount of $£ 1$ per annum, 8 years, $3 \frac{1}{2}$ per cent. ...	$\begin{aligned} & 801 \cdot 862 \\ & 9 \cdot 05169 \end{aligned}$	$\begin{aligned} & 2 \cdot 9040988 \\ & 0 \cdot 956 r 296 \end{aligned}$
	$2258 \cdot 21$	38608284
diride by amount of $£ 1$ per annum, 8 years, 3 per cent.	$8 \cdot 89034$	0.9490159

Log. amended ammal instahment
29118125

Amended annual instalment
810:2:

The Repayment Period and Statement XXVI. G. The Rate per cent.

The Deductive Method.

Showing for purpose of proof only the surphes which will arise in the fund by adopting the additional amual instalment of $£ 816: 232$ fomm in Statement XXVI. F., instead of the instalment of £ \& O d 0 0 8 in Statement XXIT. D. The correction of this surplus is shown below.

Equivalent amount of

Present annual increment £1060ヶfi4
Amount thereof, accumnlated for 8 years at
: percent. Calculation (XXVI) $3 \quad £ 9430 \cdot 09$
Amended annual instalment,

Amoment thereof, accumulated for 8 years at :3 per cent. Calculation (XXVI)4 £2058:21

Amount in the fund at end of 8 years $£ 26621 \cdot 04$
Amount of original loan $26495 \cdot 00$
Surplus $\ldots \quad \begin{array}{lll} & \ldots 26.04\end{array}$
Annual instalment to provide $£ 12604$ at the end of 8 years at : $:$ per cent. Calculation (XXVI) $5 \quad £ 1+17 f$
being the annual instahment, as
shown in Statement XXVI.F.... $£ 816.232$
less the ammal instahent, as shown
in Statement XXVI. D. £802.058

The Repayment Period and
Statement XXVI. H. The Rate per cent.

The Annual Increment (balance of loan) Method.

'To find the amended anmal sinking fund instalment consequent upon a variation in the period of repayment, accompanied by a variation in the rate of accumulation.

For lule, see Chapter XXII.

Amount of original loan £2649500
leduct amount in the fund at the end of the

Balance of loan £16560•26

Amended annual increment, to be added to the fund, and accumulated at $3 \frac{1}{2}$ per cent., to provide this amount at the end of 8 years
('alculation (NXI) $6 £ 18 \mathfrak{2} 9+4$
daluct income to be received from the present

Amended amual instalment £1482006

Additionalammal instalment \quad - $69 \cdots 20$

Pro forma Sinking Fund Account No. 11.

A Variation in the Redemption Period, and in the Rate of Accumulation.

Loan of $\pm 26,495$, repayable at the end of 25 years.
Showing the final repayment of the loan, by the operation of the increased anmal instalment of $£ 1482 \cdot 096$.

Statement XXVI. B. Rate of accumulation, $3 \frac{1}{2}$ per cent.

CHAPTER XXVII.

SINKING FUND PROBLEMS, RELATING TO THE RATE PER CENT. UF INCODE TPON THE PRESENT INVESTMENTS REPRESENTING THE FCND (in continuation of (hapter X.X).

In which the rate of income yelded by such investments is xot Uniform doring the whole of the unexpired portion of the rephyment period.
A. In mifich the future variation in the rate of income is finown, and is definite, botil as to time and amount.

Statement XXTIL. A.
B. In wifich tile feture variation in the rate of income is antichated, but is uncertann, botil as to time and hmount. Statement XXVII. D.

Summary of methods. How the variation may arise and the general considerations applicable therfeto. The deductive method. The annulal incremext (balance of loan) method. Statement showing the final repayment of the loan by tile operation of the amended annula instalment. Comparison witil Cariation A (rate of incone), in C'ilapter XX, where the rite is uniform dering the whole period. Calculation of the equated anNual income by the arithmetical method and demonstration of the error involived.

Summary of the methods of adjustment.

(I) The dedurlive method, (A) as summarised belon.

Statement XITTI.A.
(II) The direct methonl, without caleulation, as summarised at the heal of Cliapter X.X, will not apply.
(III) The anmull increment (balance of loan) method, as summarisen at the heal of ('hapter X Xll, will apply ufter finding the equated ammul income by the derluctive method (B), summorised below. Statement XXTII. D.
(11) The annual increment (rutio) method, as summarised at the heads of Chapters X.YII, X.Y「, and X.XI', will not apply, as there is not any cariation in the rate of accumulation.

Sumary of the deductive method, (A) of ascertaining the future or amemded anmual sinking frud instalment due to a variation in the rate of income to be receival upon the present investments representing the from when it is knomen at the time of making the adjustment that such future rate of income will not be uniform during the uncxpired period of repayment, but will be caried b!! a definite amount at a known future date. In this ease the problem is not complicated by any rariation in the rate of accumnlation or the period of repayment.

Statement XXVII. A.
The terms used in the following sum mary are fully explained at the head of Chapter XXlI. The uneapired period of repayment is divided into two known purts, mamely:-

The first period, during which the rate of income upon the present inrestments will remain unaltered.

The second period, during which the rate of income upon the present investments will be caried by a known amonut.

Memo. (A). If the rate of income be varich at the time of making the adjustment, as well as at a linown future date, adjust the anmual instalment, as described in Chapter IX, before operation (6) following.
(1) Having ascertained the colue of the present investments in the manner already desrribed, calculate the anmual amount of income (at each rate per cent.) to be received. during the first and serond periods respertively.
(2) Calculate the amount of an ammuity, equal to the annual income to be received during the first period at the original rate of income, for the mumber of years in that period, at the future rate of accumulation.

Calculation (XXVII) 1.
(3) Calculate the sum to which the amount so fomm in (:) will areummlate at the end of the namber of years in the secould period at the future rate of acemmulation.

Calculation ($\left.\mathrm{XVV}^{\prime} l \mathrm{l}\right)$ 2.
(4) Calculate the amonnt of an ammuity, equal to the anmual income to be receiced during the swond period at the redured rate of imome, for the mumber of years in that period at the future rate of accumulation.

Calculation (XXT'TI) 3.
(5) The amount found in (.3) added to the amount found in (4) will give the areumulated amount of the income from incestments at the end of the unexpired period of repayment, expressed in terms of original loan.
[Here refer to Memo. A, abore.]
(6) Culculate the accumulated amount of the original or amended anmual instalment for the total number of years in the umerpired repaymont period at the future rate of arcumulation, expressed in terms of original loan. Calculation ($\triangle T X$) 2.
(7) Add together the amounts found in (.5) and (6) and the value of the present investments found in (1), aml deduct the total from the amount of the original loan.
(8) The difference will be the amount of loan unprovided for in consequence of the abowe decrease in the rate of income upon the present investments during the second. period.
(9) Calrulate the ammal imstalment which will provide the amomut of loan formd in (S) at the end of the total unerpired portion of the repayment period at the future rate of accummlation.

Calculation (SXTII) 5.
(10) The ammual instalment foumd in (9) added to the arigimal or amemded ammual imstalment foumd in (G) will be the future or amemded ammanl instalment required.
(11) Prepmere statement showing the fimal repayment of the loan by the "peration of the fumd under the amended conditions. Statement SXTII. B.
(1:) Propare the usual pro forma aroount previousty recommrmeded. Iroform derount, No. 12.

If the abore proble'm bre compliceted by a variation in the rate of arrumulation, or the prrion of mpeyme"t, or both, it
 de'momstrated, but whiah meed mot ber sperially describurd.

Summary of the Deductive Methon (13) of asectaimin! the future equatod ammal income upon the peresent investments repesemting the fond when it is anticipated that the future rets of income with not be wniform during the weapired period of repayment, but the amount of the variation, and the date at which it will orcor, are mot known at the time of making the adjustment.

In this case the problem is mot complicated by any variation in the rate of accumulation, or the period of repayment.

The terms used in the following summary are fully explained at the heal of thapter SXH. The unexpired period of repayment is divided into two rstimated parts, as follows:-

The first period, during which the present rate of income will contimue to be recciced.
The second period, during which the rate of income is capected to be caried, but the exact amount of such variation can only be estimated.
(1) Estimate, as accurately as possible, the pexiod during which the present incestments will continue to yield the rate of income now received. (The first period.)
(2) Deduct the mumber of yeurs, so estimated, from the unexpired portion of the original repayment period.
(The secoud period.)
(3) Estimate as acturately as possible, the rate of income which will be gichded by the present investments during the second period, as ascertained in (2).
(4) Ascertain the value of the present investments in the mamer atready described.
(5) Calculate the ammal amonent of income to be reverved during the first period, estimated as in (1), at the present waltered rate of income.
(6) C'alculate the ammual amoment of income capected to be received duriny the secoud period, as ascertained in (方), at the rate per cent., estimated as iow (3).
(7) C'alculate the arramulatod amount of an ammity cqual to the cemmal imrome to be received during the first period as ascertained in (5) for the number of years in the first period as estimutad in (1) at the present unaltered rate of acrumulation. ('almulation (NXVII) 1 .
(8) C'alculate the sum to which the amount found in (7) will accumulate at the end of the second period found in (2) at the present unaltercel rate of accumulation.
('alculation (XXVII) d.
(9) C'alculate the accumulatcd amount of an amuity equal to the anmual income estimated to be reccived, as foumd in (6) during the second period found in (: 2) at the rute per cont. of income estimated in (3) at the present unaltered rate of accumulation. ('alculation ($\mathrm{XYI} I \mathrm{I}$) 3.
(10) The amount found in ($(S$) added to the amount found in (9) will represent the amount of original loan which will be provided at the end of the unerpired period of repayment by the future acomulation, at the maltered rate, of the anmual amounts of income from the present incestments found as above,
as to the first period, in (5).
as to the second period, in (6).
(11) Caldulate in the manner alredy deseribed, usiny the author's standard calculation form, No. Bre, ('hapter X, the cqual annual instalment or anmuity which will dmount to the total sum found in (10) at the end of the unexpired repayment period, at the unaltered rate of accumulation. ('alculation (X.Y'Il) 6 .
(1i) The anmuity, or cqual ammal sum, found in (11) is the equated anmual income required, and may be treated as part of the future or amended dnmual increment in all problem.s incolving a cariation in the rate pere cont. of income upon the present investments accompanied by a rariation in the rate of accumulation.

Pro forme decount, İo. 1:).
General Coxsmbramons. Referenee has alrearly been made in previous chapiers to the difforulty which arises, esperially in casses where the repayment of the loan is spread over long periods, of fixing the future rate of arcomutation of the sinking fund, and a similar difforulty will also oerour in comnertion with the futur rate of income to be reecired upon the present insestments representing the amount in the fund. In adjustments similar to those under review the future rate of arcumulation will nearly always be a matter of speculation and any uncertanty in the matter is met in practice by assuming a rate of aremmutation on the low side. The rate of income
to be reccived in future upon the investments representing the fund at the time of making the adjustment may in some cases be assured for the whole of the mexpired portion of the repayment period, and in Chapters N1X, XX, and XX1, dealing with Variations A, B, and U, it has been assumed that this will be the case in order to simplify the calculation and to demonstrate the principle. It has in fact been assumed that the reduction in the rate of income on the present investments in Variations B and C has been partly the cause of the rectification of the annual instalment. If at any future time the rate of income from the present investments should again be reduced it would be necessary to repeat the adjustment. This reduction in the rate of income yielded by the present investments may be due to a decrease in the rate of interest upon a security similar to a mortgage without any fall in the capital value of the investment, or might be due to the realisation of part of the security at a loss, in which case the additional annual instalment would include the replacement of the deficiency of capital, and a further amount due to the reduced income upon such capital realised, although the actual rate per cent. yielded on the re-investment might remain the same. But the rate of income to be received from the present investments may be reduced at the time of making the adjustment, and at the same time it may also be provided that a further additional reduction shall take place at a fixed future date. These are definite data which may be made the subject of actual calculation. Such an instance occurred in 1888, when, by Mr. Goschen's Finance Act, the rate of interest on Consols was reduced from 3 per cent. to ${ }_{2} \frac{3}{4}$ per cont. for a period of 15 years until $190: 3$, and the Act provided that the interest should be then further reduced to $2 \frac{1}{2}$ per cent., the present rate. If the typical Sinking Fund which has been used to illustrate the previous examples had been, in 1888, invested in Consols and had then an mexpired period of 18 years to rum, the method of calculation adopted in all the variations already considered would have been accurate, and it would have been quite correct to base the additional ammal instalment on an assured yield of $2 \frac{3}{4}$ per cent. But if the fund had, in 1888, been invested in Consols, and had then an unexpired period of 20 years to run, the problem would have heen very different seeing that the present investments would yicld $\mathfrak{D}^{3} \frac{3}{4}$ per cent. for 15 years and $2 \frac{1}{2}$ per sent. for the remaining 5 years.

A similar calculation " by step" has already been made when dealing with the adjustment of a deficiency in the fund
by means of an additional annual instalment to be spread over the earlier years only of the unexpired repayment period (see Variation II (Deficiency), Chapter XVI), and a similar procedure will apply to the above conditions. At the end of this chapter the method of ascertaining the amount of an annuity in this way will be further explained and illustrated by a shorter mode of calculation.
(Statement XXVII. C.

Illugtration of the Method. The method of making the adjustment will be illustrated by means of the results obtained in Chapters XIX and XX. In Variation A, Chapter XIX, the future rate of income upon the present investments is assumed to be $3 \frac{1}{2}$ per cent. for the whole of the unexpired period of 13 years, and in Variation B, Chapter XX , to be reduced to 3 per cent. for the same unexpired term. This reduction in the rate of income in Variation B is assumed to take place at the end of the 12th year and to continue unaltered during the remaining 13 years, but a similar change in the rate of income to that in the case of Consols already referred to might take place during the unexpired term of 18 years in Variation A. The present annual increment in Variation A includes income at $3 \frac{1}{2}$ per cent. on investments valued at $£ 993 \sim 74$, viz., $£ 34 \cdot 648$ per annum which, at the end of the unexpired period of 13 years, will amont at 3 per cent., as shown by Calculation (XIX) 1, to $£ 5429494$.

In Variation B the present annual increment includes income at $: 3$ per cent. on the same investments, viz., $£ 29$ r. 984 per annum, and this at the end of the period of 13 years will amount at 3 per cent., as shown by Calculation (XX) 1, to $\mathfrak{£ 4 6 5 : 3 5 . ~}$

Both the above annual amounts of income are assumed to accummlate at $: 3$ per rent. for the $1: 8$ years so that the question of the rate of accumulation does not affect the problem. But if in Variation A there had been a reduction in the rate of income taking place at the end of the Sth year of the unexpired period of $1: 3$ years, the accumulated amount of the annual income at the end of the 13 years would have been different.

Instead of $\mathfrak{f}: 34 \cdot 648$ per ammum at ${ }_{2}^{2}$ per went. for $1: 3$ years there would have been:-

Income at: $: \frac{1}{2}$ per cent, or $£: 3+\cdots \cdot 6+8$ per ammom for $\&$ years, followed by
Income at :3 per cont., or $£ 29 \mathrm{C} 984$ per amum for 5 years, both accumulating at:' per cent. for the above periods; and in
addition the accumulation at $: 3$ per cent. of a sum (to which $£: 34 \cdot 648$ per ammm will amomet at $: ;$ per cent. at the end of 8 years) continued without further ammal addition for a period of 5 years.

The amount of loan which will be provided at the end of the period of $1: 3$ years by the accumalation of the above income from investments may be ascertained by the following method by " step."

Amount of $£ 34 \cdot 648$ per anmum for 8 years accumulated at 3 per cent.

Calculation (XXYI1) 1 £:3091.403
Amount of the above sum of $£: 3091 \cdot 40: 3$ in 5 years accumulated at 3 per cent

Calculation (XXV1I) 』 £ $2558: 783$
Amount of $£ 297.984$ per ammum for 5 years accumulated at 3 per cent

Calculation (XXVII) : $£ 15800: 3$
Accumulated amomen at the chul of $1: 3$ years ... $£ 5165820$
as compared with the following amounts already ascertained on the assumption that the rate of income will be uniform during the whole period of 13 years: -

$$
\begin{array}{cccccc}
\text { at }: 3 \frac{1}{2} \text { per cent. ... } & \ldots & \ldots & \text { IIX. A. } & \pm 54: 9494 \\
\text { at }: 3 \text { per cent. ... } & \ldots & \ldots & \text { XX. A. } & \pm 465: 350
\end{array}
$$

The above sum of $£ 51658^{2}$ represents the portion of original loan which will be provided at the end of the period of 13 years by the accumulation at ${ }^{3}$ per cent. of the income from investments (at $3 \frac{1}{2}$ per cent. for the first δ years and at 3 per cent. for the remaining 5 years).

The above figures show the deficiency in the amoment of original loan to be provided by the accumulation of the anmal income from investments if such investments had yielded the above definite although variable rates during the period of 18 years, as compared with a uniform rate of $3 \frac{1}{2}$ per cent. as assumed in the calculation of the amended ammal instalment in Variation A, Chapter XIX. The following Statement, XXVII. A, shows the deductive method of ascertaining the amended annual instalment in consequence of a reduction in the rate of income of the above character.

```
The original annual instalment as shown in State-
    ment SLX. A. is ... ... ... ... ... ... ...
        £っ1~8:6
and the additional amual instalment due to the
    variation in the rate of income from the present
    investments now under review, as found by
    Calculation (XXYII) 5, is ...
        £16:88:
or an amended anuual instalment as shown by
    Statement XXVII. A., of ... ... ... ... ... £゚セります!
```

The above reduction in the rate of income from the present investments at the end of the 8th rear involves a further deficiency of $\mathfrak{E} 26.367$ in the amount of loan which will be provided at the end of the unexpired repayment period of 13 years，and is the difference between the future accumulation of the income from investments shown in

```
Statement NIX. A. ... ... ... ... ... ... £5429.49
and the amount ascertained as above ... ... £51658%
```

or £26.3.67
requiring a further additional amual instalment of $£ 16 \cdot 88: 3$ as shown by Calculation（ NXVII ） 5.

The Future Equateb Ansual Income．The future or amended annual increment will now be considered．Statement XIX．A．，Variation A，shows that the future or amended anmal increment to be accumulated for $1: 3$ years at $: 3$ per rent．is ± 1060 tit．This is made up of：

In the case now mader consideration the future ammal increment will still be $£ 1060$ tit seeing that there is not any variation in the rate of acemulation，as proved by the results obtained in Chapter X X，Variation B，but it will be an equated and not an actual ammal increment，ascetained as follows：－

> Present amual instalment，as above．．．．．．．．．．．．£う12826
> Additional annual instalment due to the reduction in the rate of income from the present invest－ ments from $3 \frac{1}{2}$ to ${ }^{3}$ per cent．during the last five years of the period of repayment

> Calculation（XXVII） $5 \quad \pm 16.883$
> Amended annual instalment（Statement XXVII．A．）£っこ9．709 leaving to be provided，an equated ammat amount of income from the present investments ．．．．．．£330．765

> Amended annual increment，as above ．．．．．．．．．£10604r4

Under the altered conditions，the actual amual income from the present investments will be $\pm: 3+648$ per amm for 8 years，followed by $£ 297984$ per anmum for 5 years，and these annual sums accumulated at $: 3$ per cent．will，at the end of the 13 years，amount together to $\pm 5165 \cdot 8$ ．If the calculation be correct the above equated annual income（ $£: 3 ; 30 ; 65$ ）should represent an equated sinking fund instalment which will provide $£ 5165 \cdot 8 \%$ at the end of $1:$ years if aecumulated at $: 3$ per cent．，and this is found to be the rase by Galculation（XXYII） 6 ． The above amount of $\pm: 30 \cdot 765$ may therefore be described as the true equated anuual income，being the amual sum which， aecumulated for $1: 3$ years at $: 3$ per cent．，is equivalent to the
 accumulated at $: 3$ per cent．for the successive periods of 8 and 5 years as above desicribed．This equated ammal amount of income of $£ 3: 30765$ does not take any part in the actual working of the fund．It is merely the arerage anumal equivalent（over the whole period）of the known actual varying amounts which will be received during the period and is used here mercly to demonstrate that the actual successive ammal amounts of income are the equivalents of the calculated equated ammal income．

Where the future variation in the rate of income during the mexpired portion of the repayment period is defimite both as to time and rate per cent．and is not an estimate the above deductive method（A）should he adopted exdusively．This method is summarised at the head of this chapter．

The Metiod by Step．In Chapter XVt，dealing with the correction of a deficiency in a sinking fund，two methods of
adjustment have been shown depending upon the period during which the additional amnual instalment is required to be set aside and added to the fund. In Variation I, such additional annual instalment is spread equally over the whole of the unexpired portion of the repayment period of $1: 3$ years, and as shown in that chapter the method of adjustment is a simple ouc.

In Variation II the conditions are more complicated because it is required that the additional aunual instalment shall be set aside and added to the fund during the earlier years only of the unexpired portion of the repayment period. This involves an increased annual charge as compared with Variation I, as follows:-

In Variation I the additional annual instalment to be spread equally orer the whole of the mexpired repayment period of 13 years, as shown by Statement XVI. A., is $£ 45.594$
In Variation II, the additional annual instalment to be set aside during the first 5 years only of the unexpired repayment period of 13 years, has been obtained by the method "by step " there deseribed, and as shown in Statement XVI. C, is $£ 104 \cdot 0.39$
proving that the increased annual burden is due solely to the reduction in the period allowed for the adjustment of the defieiency, the rate of accumulation being the same in both cases. In this example there is a rariation from the general rule applicable to the accumulation of a given sum of moner now in hand and also of an ammal or other periodie sum, or annuity, which rule is based upon a steady and uninterrupted accumulation, and does not provide for any hreak in any of the factors of rate per cent. or period.

The present example relates to the correction of a sinking fund in conseguence of a variation in the future rate of income to be received on the present investments representing the fund, which oceurs in the middle of the mexpired portion of the repayment periorl, and therefore a similar method by "step" may be adopted.

Having ascertained the additional ammal instalment of £T:9.709 in the above manner, statement XXVII. B. has been prepared showing the final repayment of the loan. This statement shows the accumulated amoment, £1106-10 of the anmual increment of ± 10 ar: 95 at the end of the $1: 3$ years by the longer method "by step" by two Cateulations, (XXVII) 1 and 2 ,
relating to the anumal income of $£: 3 t \cdot 648$. The same calculation may be made by the shorter method shown in Statement XXVII. C., described later, which is similar to Calculation XVI. D. 1. The method shown in Statement XXYII. A. is the one which should be adopted in cases where the further reduction in the rate of income from the present investments is not an estimate, but is known and is definite as to the rate per cent. as well as the period. The difference between the arithmetical and true methods of arriving at the equated period of repayment will be fully discussed in Chapter XXXII where it will be shown that the same principle applies, and at the end of this chapter the question of equation as applied to the rate per cent. will be briefly discussed.

Calculations (XXVII) 1 and 2 are made with the object of finding the amount which will be provided at the end of 19 years by the accumulation at 3 per cent. of an amnity of $£ 34 \sim \cdot 648$ to be set aside for the first 8 years of that period when the annuity ceases, but the sum to which it then amounts will continue to accumulate at the same rate for the remaining 5 years.

Calculation (XXVII) 1 shows that at the end of 8 years the amuity of $£ 34 \cdot 648$ will amonnt to $£ 3091 \cdot 403$, and Calculation (XXVII) 2 shows that this sum accumulated for a further 5 years will amount to $£ 3583 \cdot 783$. The amount of $£ 3091 \cdot 403$ found by Calculation (XXVII) 1 becomes the basis of Calculation (XXVII) 2, but being only an intermediate factor is not of any further interest in the problem. The two calculations may therefore be combined with advantage as shown in Statement XXVII. C., using Thoman's method, as being the simpler, pointing out, horever, that if the calculation he required at any rate per cent. not worked out by Thoman, the values of the factors may be ascertained by means of the formuke already referred to. All that is necessary is to remember that (a^{n}) of Thoman may be found by means of the following factors referred to in Chapters IX and X .

$$
\log a^{n}=\log \mathrm{R}^{\mathrm{N}}+\log r-\log \left(\mathbf{R}^{\mathrm{N}}-1\right)
$$

It is important to remember, however, that the methor applies equally to cases in which the rate of accumulation is not the same in hoth periods, and that the periods in each factor R^{N} may be different. In the following Calculation XXVII. C. 10 has been added to the sum of the logs of the annuity and of R^{N}, for the reason fully explained in Chapter IX, dealing with Thoman's Tables.

The Arithmetlcal Mefiod of Finding the Equated Anveal Incone. Athongh the actual amount of the immediate reduction in the future rate of income to be received upon the present investments may be known at the time of making the adjustment, it may be anticipated that there will be a further reduction of an unknown amoment at some future date and it may be deemed adrisable to make allowance therefor. The above method may be used althongh in this case there is one known and one estimated rate per cent. of income.

In such a case the amount of the further reduction is problematical, and it is therefore preferable and permissible to use the shorter and more direct arithmetical method of finding the equated ammal income to be recoived over the period of 13 years, and this will now be shown as applied to the above particulars in order to compare the result with the mathematical method just described.

> There is (1) an annual income for 8 years at $3 \frac{1}{2}$ per cent. of £347. 648
> and $(\mathcal{2})$ an annual income for a further 5 years at
> 3 per cent. of
> £ 297.984
and it is required to find the equated amual income for $1: 3$ years, which is equivalent to the above. Proceed as follows:--

$$
\begin{aligned}
& \text { (1) } 347.648 \times 8 \\
& \text { (1) } \\
& \text { (2) } 297.984 \times 5 \\
& \ldots
\end{aligned} \ldots
$$

$£ 4271 \cdot 104$
this total, divided by 13, gives an ammal sum of $£ 598546$
which is the arithmetical equivalent of the above anmual
 periods.
 the ralue of the present insestments, is equivalent to $3: 31$ per cent., but the actual rate per cent. is immaterial. What is important is the fact that the estimated anmal income to be

 tained by the mathematical method as above, or a decrease of

Seeing that the total future or amended ammal increment must be $£ 10604$ it in order to provide the balance of loan at the above rate of accumulation the estimated anumal deficiency of $£ 2 \cdot 219$ must be added to the additional instalment of $£ 1688: 3$ (found as above in Calculation (XXVII) 5), to be charged against revenue or rate, with the result that at the end of the period the fund will be in excess of the proper amount by the accumulation of the larger actual amounts of the future annual income owing to the fact that the actual income received will be in excess of the equated amount assumed. Further, the actual amounts in the fund at the end of each year will exceed the amounts shown by the pro forma account already referred to, by an increasing annual surplus, for the same reason. The difference in this case is only small, but it is proof that the arithmetical method of equation is incorrect, and the extent of the error depends upon the actual rates per cent. of income, the periods during which they operate, and the amount in the fund. The same error will be found in the arithmetical method generally adopted when considering the equation of the period of repayment in Chapter XXXII, and the two results should be carefully compared.

The Rate per cent.

 Statement XXVII. A.
The Deductive Method.

Showing the method of adjusting the annual instalment, in consequence of a known rariation in the rate of income upon the present investments, to occur at a known future date, without any variation in the rate of aceumulation or in the period of repayment.

The original conditions in this example are similar to Variation B, in Chapter XX, in which case the reduction in the rate of income, from $3 \frac{1}{2}$ to 3 per cent., took effect at the end of the 12 th year. In the present instance, however, the reduction in the rate of income, from $8 \frac{1}{2}$ to 3 per cent., does not operate immediately, but occurs at the end of 8 years. The future annual income from the present investments will therefore be:--

$$
\begin{aligned}
& \text { for } 8 \text { years, at } 3 \frac{1}{2} \text { per cent., on } £ 9932 \cdot 74 \text {... } £: 34 \cdot 648 \\
& \text { for } 5 \text { years at } 3 \text { per cent., on } £ 9932 \cdot 44 \text {... } 297 \cdot 984
\end{aligned}
$$

The Rate per cent.

Statement XXVII. B.
Showing the final repayment of the loan, by the operation of the sinking fund, after making the adjustment in the annual instalment, consequent upon a variation in the rate of income upon the present investments to occur at a known future date, without any variation in the rate of acrumulation or period of repayment.

	$\begin{gathered} \text { Equivalent } \\ \text { amount of } \\ \text { original loan. } \end{gathered}$
Amended annual increment for 8 years:-	
Present annual instalment ... £229「09	
Income from investments, $; \frac{1}{2}$ per cent. $347 \cdot 648$	
$£ 1075 \cdot 95$	
Amount thereof, accumulated for 8 years at 3 per cent. Calculation (XYYII) \%	$£ 9580 \cdot 22$
Amount of this sum, acermulated for a further 5 years at:? per cent. Calculation (XXVII) 8	$£ 1110610$
Amended annual increment for 5 years:-	
Annual instalment, as above... £ֹ29\%09	
Income from investments, ? per cent. $297 \cdot 984$	
$£ 1027 \cdot 693$	
Amount thereof, accumnlated for 5 years at 3 per cent. Calculation (XXYII) 9	$£ 5456 \cdot 16$
	$£ 16562 \sim 26$
Present investments (at end of 12 th year) ...	$£ 9932 \cdot 74$
Amount of original loan	£26495.00

The Rate per cent.

Statement XXVII. C.
The Amount of (the A mount of $£ 1$ per annum).
Method by Step, by Thoman's 'Tables.
To find the accumulated amount of an amuity to be added to the sinking fund for a limited period of years, and at the end of that period the accumulated amount thereof to continue to accumulate for a further specified period. The rate of accumulation in both cases may be the same, or be at different rates per cent.

Required the amount of an amuity of $£ 34 \cdot 648$ to be added to the sinking fund for a period of S years, and accumulated at 3 per cent. At the end of 8 years the annuity ceases, but the sum to which it has then amounted continues to accumulate for a further period of 5 years at 3 per cent.

First period, 8 years; second period, 5 years.

Log. annuity		$34 \cdot 648$	2.5411397
ald Log. R^{N}, 3 per cent.	8 years		$0 \cdot 1026978$
Log. $\mathrm{R}^{\mathrm{N}}, 3$ per cent.	5 years		$0 \cdot 0641861$
			2.7080236
		add 10	12.70802:96
deduct Log. $a^{n}, 3$ per cent.	8 years		$9 \cdot 1536819$
			3.5543417

which is the log. of the required future amount

Note. This statement may be compared with Statements XVI. D. 1 and XXXIV. G.

Pro forma Sinking Fund Account, No. 12.

A Variation in the late of Income from Investments, which is not uniform over the unexpired Repayment Period.

Loan of $£ 26,495$, repayable at the end of 25 years.
Showing the final repayment of tife loan, by the operation of the increased annual instalment of $£ 729 \cdot 709$.

Statement XXVII. B. Rate of accumulation, 3 per cent.

Year.	$\begin{aligned} & \text { Amount } \\ & \text { in the fund } \\ & \text { at } \\ & \text { beginning of } \\ & \text { year. } \end{aligned}$	Income received"from investments made op to $l \mathfrak{L t h}$ year.	$\begin{gathered} \text { Annual } \\ \text { sinking } \\ \text { fund } \\ \text { instalment. } \end{gathered}$	Income received from investments made after 12 th year 3 per cent.	Amount in the fund at end of year.	Year
1						1
2						2
3						3
4		amount	the fur	d at the	of	4
5		12th year,	$\pm 9932 \cdot 74$	4 , is the	rect	5
6	cal	lated amo	nt, as	hown by C	cula-	6
7		(XV) 2 ,	and by	the pro	ma	7
8		unt, No. 1	'hapter			S
9						9
10						10
11						11
12					$9932 \cdot 744$	12
13	9982.744	$8+7 \cdot 648$	729.709	Nil	$11010 \cdot 101$	13
14	$11010 \cdot 101$	$347 \cdot 648$	~29.709	32920	12119.758	14
15	12119.778	$\therefore 47 \cdot 648$	729.709	$65 \cdot 610$	$13202 \cdot 745$	15
16	13262.745	$847 \cdot 648$	729.709	$99 \cdot 900$	$14440 \cdot 002$	16
17	$14440 \cdot 002$	$847 \cdot 648$	729.709	$135 \cdot 216$	15652.575	17
18	15650.575	$347 \cdot 648$	\%29.709	171.594	16901.526	18
19	$16901 \cdot 526$	$347 \cdot 648$	729.709	$209 \cdot 070$	18187.953	19
20	$18187 \cdot 953$	347648	729.709	$247 \cdot 654$	1951~96t	20
21	$1951 \stackrel{964}{ }$	297.984	729-709	$287 \cdot 407$	20828064	21
22	20828.064	297.984	7-99.709	$326 \cdot 860$	22182617	22
23	22189.617	297.984	т29.709	$367 \cdot 494$	$23575 \cdot 804$	23
24	$23577 \cdot 804$	$297 \cdot 984$	729.709	$409: 350$	$25014 \cdot 845$	24
25	25014.847	297.984	~29.709	$45 \sim 460$	$26495 \cdot 000$	25

The Rate per cent．

The Annual Increment（balance of loan）Method．

To find the amended annual sinking fund instalment，conse－ quent upon a known rariation in the rate of income upon the present investments to occur at a known future date， based upon the equated anmual income．

The rule relating to this method is stated at the head of Chapter XXII．

Amount of original loan（25 years）．．．．．．．．．．．．£26495．00
deduct amount in the fund at the end of the 12th year ．．．．．．．．．．．．．．．．．．．．．．．．£99：32： 4

$$
\text { Balance of loan } \mathfrak{£ 1 6 5 6 2 2 6}
$$

Annual increment，to be added to the fund，and accumulated at ：3 per cent．，to provide this amount at the end of 13 years

Calculation（XX）\＆£1060 tit
deduct the equated annual income to be
received from the present investments ascer－ tained as described in the text ．．．．．．．．．£330－i65

Amended amual instalment ．．．．．．．．．．．．£т29： 09
being Present annual instalment ．．．£ $\ddagger 128826$
Additional instalment，as
found in
Statement XXYII．1．£16：88：
£っこの「て09
Tote．This method will he of use where the rariation in the rate of income is of the above unequal nature，and is combined with a rariation in the rate of accemmation，as in Chapter XXI（Viariation（＇）．

Pro forma Sinking Fund Account, No. 13.

A Variation in the Rate of Income from Investments, which is not uniform over the unexpired Reparment Period.

Lan of $\mathfrak{E} \cdot 6.495$, repayable at the end of 25 years.
Showing the final repayment of the loan, by the operation of the increased annual instalment of $£ 229 \cdot \tau 09$, and the equated ammal income of $£: 3: 30 \cdot 765$.

Statement XXVII. D. Rate of accumulation, 3 per cent.

Section V.

Sinking Fund Problems.
The Date of Borrowing and the
Redemption Period.

CHAPTER XXVIII.

SDNKING FUND PROBLEMS RELATING TO THE DATE OF BORROWING AND THE REDEMPTOON PERIOD

Without any complication as regalids the life or deration OF CONTINUING ETHLTY OF THE ASSET CREATED OUT OF TILE LOAN.

Loan borrowed over seteral yelrs, in one sum in eacil tear, EACII YEAR's BORROWLNGS BEINGG REPAYABLE IN゙ A PRESCRIBED PERIOD FRON THE DATE OF BORROWING.

1. By means of one sinfing fund only.
2. By separate sinking funds for each tear's BORROWINGS.

The foregoing chapters deal with the various problems likely to arise in connection with the sinking funds of local authorities and commercial and financial undertakings affecting (1) the amount in the fund at any time; (2) the rate per cent. of accumulation; (3) the rate per cent. of income upon the present investments representing the fund; (t) the period of repayment; and (5) various combinations of the above factors. In the whole of the examples which have been used to illustrate such problems it has been assumed, for the purpose of calculating the original or amended anuual instalment to be set aside and accumulated as a sinking fund to provide a given loan at the end of any period, that the luan was borrowed in one year and on one date, namely, at the beginning of the financial year, and that the first annual instalment was set aside at the end of that year. This method of treating an annuity or other periodic payment is the basis of all such calculations and upon which the formula and tables are constructed. This ideal procedure may, it is true, be met with occasionally; but as a matter of fact it very seldom occurs in actual practice. It has been assumed in all cases that it has so happened in order to simplify the conditions and to demonstrate the actuarial principles underlying the repayment of delot in this manner, without introducing any extraneous complications. The time has now arrived when it is necessary to consider the conditions oceurring in actual practice.

The variations from the ideal method of Jorrowing are of a twofold nature and arise when the borrowings are made at
various dates in any one year or are spread over several years. If the total loan be repayable on a given date both these variations may necessitate an adjustment in the annual instalment. In the case of a loan borrowed at various dates during any one year the necessity for any adjustment depends upon the magnitude of the loan and affects only the first and last years of the term. Any neglect to make such adjustment cannot prolong the period of repayment for more than part of a year, but in the case of borrowings spread over several years the matter becomes more important. There are other factors which may further complicate the problem, depending upon the nature of the outlay and the periods of repayment allowed for each class. In some cases the power or sanction specifies not only the total amount of loan authorised, but also gives details of the component parts of such loan divided as between the various classes of outlay, each having its own period of repayment. In some cases, however, the total amount authorised is stated without any such subdivision, and an equated period is preseribed for the repayment of the total loan.

The after consideration of the subject will be divided into two parts depending upon the character of the outlay, which may be all of one nature having a similar life or period of utility and a consequent equal period of repayment. On the other hand, the outlay under one power or sanction may consist of various classes for each of which a separate, and varying, period of repayment is imposed.

It may be accepted as a general rule that the repayment period now allowed by Parliament is fixed with regard to the probable life or duration of continuing utility of the works. This variation in the life of the asset imports special difficulties into the problem, relating to the rexed question of the adequacy or otherwise of the sinking fund instalment as a provision for depreciation, obsolescence and supersession.

Dealing first with the actual borrowings, the subject will be treated in the following order, namely :-
I. Loans authorised for outlay all of one nature having the same period of repayment.
As regards the actual borrowing such loans may be divided into three classes as follows:
(a) Loan hortowed over several years, in one sum in each year, repayable over a term of years in a prescribed period from the sereral dates of borrowing. Such loans will be described in this chapter.
(b) Loan borrowed over several years, in one sum in each year, repayable in one sum on a certain specified date. Chapter XXIX.
(c) Loan borrowed in one or more years, in varying amounts at varying dates in each year, repayable in one sum on a certain specified date, where it is required that the revenue or rate account of each year of borrowing shall be charged with a proportionate part of the annual sinking fund instalment.

Chapter XXX.
II. Loans authorised for outlays of varying nuture, each having a different life or period of continuing utility, the whole of the loan to be repaid on one uniform date.

Chapter XXXII.
It is not necessary to do more than point out that if at any future time during the operation of the fund any question should arise as to a variation in the reparment period, the rate of accumulation, or the rate of income to be received from the present investments representing the fund, the problem may be solved by one or other of the methods described in previous chapters.

The total amount of any loan sanctioned for purposes of large public works is rarely required to be raised in one year. The actual construction often occupies several years, and such au amount only is borrowed in any one year as will be sufficient to pay for the works actually constructed in that year. The complication of the sinking fund owing to the loan being borrowed over a period of years may be obviated by borrowing one amount in advance; but the results of borrowing largely in excess of the actual annual requirements are:-
(1) A loss of interest owing to the money borrowed lying in the bank.
(2) The excessive sinking fund instalments which have to be set aside, and provided out of revenue or rate, in respect of the amount borrowed in excess of the actual requirements.
The Act authorising the borrowing generally contains a clause limiting the period of repayment either to a definite number of years from the date of borrowing or to a specified date, and the limitation applies to the amount horrowed in each year. If the construction extends over, say, four years, this will entail four separate calculations of the anuual instalment; and the generally recognised practice is to treat each year's
borrowings as a separate loan repayable in the prescribed number of years from the actual date of borrowing and requiring a separate sinking fund. In the case of a large municipality this entails the keeping of a great number of sinking fund accounts, and the amual provision of the instalments becomes a rery detailed process. Further, the final repayment of the loans is spread over a term of years equal to the extended period of borrowing.

In the case of loans raised by the issue of stock the whole of such stock is made redeemable at the end of a specified number of rears, or, as is generally the case, on a definite date. In this case there need only be one sinking fund with four separate annual instalments set aside each year for decreasing periods, but all calculated to mature at the same date and at the same rate of accumulation.

The present example will be illustrated by the sinking fund fully described in Chapter XV, relating to the repayment of a loan of $£ 26,495$ in 25 years at an accumulation rate of $3 \frac{1}{2}$ per cent. In this case it has been ascertained that if the whole of the loan were borrowed in one year, namely, at the beginning of the financial year, it required an annual instalment of ± 680234 to be set aside at the end of the first and 24 subsequent years in order to repay the original loan. If the loan, instead of being borrowed in one year, were borrowed over a period of four years, and the sanction or authorisation imposed the period of redemption of 25 years in respect of each amount borrowed, the conditions would have been considerably modified. There is in this ease the equivalent of four separate loans each repayable in 25 years, but maturing at the end of four successive years. It will be assumed that each amount of loan was borrowed at the beginning of the financial year, or if borrowed on several dates in that year that no neressity exists to equate the borrowing at the various dates. It will be further assumed that the above amount of $\mathscr{L}^{2} 6,495$ was borrowed in unequal amounts in cach of the four rears, and, in order to a void making four separate additional calculations, that a definite proportion of the loan was borrowed in each year. Seeing that the ammal instalment is based upon the amount of $£ 1$ per annum for 25 years, it is obvious that it is dirertly proportionate to the amount of the loan and that the four anmal instalments may be found by dividing the original ammal instalment of E680: ent in the same proportions as the total loan is divided.

The following table shows the actual details of the loan under consideration : -

TABLE XXVIII. 1.

Loan of $£ 26,495$, borrowed over four years. Repayment spread over a similar period.

Original annual instalments all calculated to mature in 25 years but at the end of successive rears.

Rate of accumulation $9 \frac{1}{2}$ per cent.

Year of borrowing.	Redemption period.	Proportion borrowed each jear.	Amount borrowed each year.	Annual instalment on yearly horrowing.	Ammal instalment at end of each year.
First	25 years	$2 / 14$	3785	$97 \cdot 176$	$97 \cdot 176$
Second	,	$3 / 14$	$5675 \cdot 5$	$145 \cdot 764$	$242 \cdot 940$
Third	"	$4 / 14$	7570	$194 \cdot 353$	$437 \cdot 293$
Fourth	"	$5 / 1.1$	$9+625$	$242 \cdot 941$	680\%234
			26495	$680 \cdot 234$	-

There are two alternative methods of keeping the sinking fund accounts in such a ease. One method is to keep one sinking fund only, and to set aside an increasing instalment during the first four years, a constant instalment during the next 21 years, and a decreasing instalment during the final three years of the total period of 28 years during which the fund will rum. If this method be applied to the foregoing example, the amnual instalments added to the fund will be as follows:-

TABLE XXVIII. B.
Loan of $£ 26,495$, borrowed over four rears. Repayment spread over a similar period.
Annual instalments to be added to one sinking fund relating to the total loan.

being the equivalent of 25 ammal instalments of $£ 680 \sim 24$
£17,005•850

There are several objections to kecping the sinking fund accounts in this manner, all of which are practical. The first is that unless a proper pro forma account be at once made out showing the operation of the fund until maturity there will be a liability to continue the full instalment of $£ 680234$ beyond the 25 th year. A further error may possibly arise owing to the application, during the period, of part of the fund in redecming part of the debt. As previously stated, if any part of the fund be so applied it is requisite and obligatory to pay into the fund, annually, interest upon the loan so redeemed at a rate per cent. at least equal to the calculated rate of accumulation. Although this obligation may be remembered and carried out during the first 25 years it may then be overlooked that at that time $£ 3$, i 85 of loan has been fully redeemed and that interest upon this amount of loan repaid need no longer be 'harged to the revenue or rate account and added to the fund. The same factor of error may arise at the end of the 26 th, 2 th and 28th years. Taking the above possible sources of error into consideration, it is preferable to adopt a method which will avoid them, although it may entail a little more clerical work. The proper method in such cases is to keep a separate sinking fund for each rear's borrowings, and to prepare at the dates of borrowing a pro forma account showing the operation of each fund until maturity.

It cannot be too often repeated that this pro forma account should lee prepared in respect of every sinking fund. If the method of separate sinking funds be adoped it will ensure that proper payments of interest in respect of debt redeemed out of the fund are made to the fund each year and will also enable arrangements to be made to repay each loan at the end of the presrribed period. It will also, in the case of long repayment periods, aroid the necessity of referring to old ledgers or books of account which may have been destroyed.

For this purpose it is an advantage to earmark each fund, and also the correponding instalment, in some such way as the following :-

Gis Works sinking Fund. Sinction 1900. Lons of 1901 - 25 Years.
and to number earl instalment.
The charge to the revenue or rate account at the end of the thind year womld be made up as follows:-

Sanction 1900 25 Years.

At the end of each of the last four years one of the original year's borrowings will be repaid; and the charge to revenue or rate at the end of the 26th year (when the loan borrowed during the first year has been entirely repaid) will be as follows:-

Sanction 1900-25 Years.

Loan of 1901.	Repaid	\ldots	nil
1902.	25th Instalment	...	\ldots	\ldots	$£ 145 \cdot 764$
1903.	24 th do.	\ldots	\ldots	\ldots	$194 \cdot 353$
1904.	23rd do.	\ldots	\ldots	\cdots	$242 \cdot 941$
	Total Instal	ment		...	$£ 58 . \cdot 058$

Although the method of keeping separate sinking funds for each year's borrowings under each sanction or authorisation is here advocated, it must not be assumed that this method requires that separate bank accounts should be kept for each fund. This would become intolerable in practice even if the bank would agree to do so. Neither is it necessary to keep a separate investment account for each fund. One bank account and one investment account for each department of the local authority is quite sufficient because at the end of any year the amount in the bank, the amount invested, and the loans repaid out of sinking fund should together be equal to the amount standing to the credit of the fund, or to the credit of the whole of the funds of the particular department. In this connection it is important to point out that loans repaid by means of the sinking fund should be treated as an investment of so much of the fund so applied and be debited to a special account instead of being debited to the sinking fund account, in the same way that investments in outside securities are kept in separate accounts. The reason for doing this is to ensure that the revenue or rate account is annually debited, and the sinking fund ereditod, with the proper amount of interest in respect of such part of the fund so applied in redemption of deht. If the
accounts are kept in such a manner the sinking fund will, at the end of each year, show the amount of loan provided for out of revenue or rate, and will emahle a comparison to be made with the proforma account already refered to and recommended. By this means only can any rariation from the calculated amount which should be in the fund at any time be readily ascertained and immediately adjusted. This applies to all sinking funds.

It ought, however, to be pointed out that if only one bank account and one investment account be kept it will be necessary to apportion, as between the different sinking funds, the interest allowed by the bankers and the income received from investments whether the investments be in outside securities or consist of loans redeemed out of the sinking fund. In ordinary cases there may be some difficulty in doing this because the interest allowed by the bank upon balances in hand will almost certainly be at a lower rate than the calculated rate of accumulation of the fund. This difficulty is, however, removed by the fact that there is in the case of each sinking fund a standard to work to, namely, the pro forma accome previously prepared showing the amount which should stand to the aredit of each fund at the end of each year of the repayment period. If the amount of income actually receised from the investment of the sinking fund in outside securitios and in loans redeemed falls, short of the amount originally calculated to be received, such deficiency should be made good each year by charging it to the revenue or rate account and paring the deficiency into the sinking fund bank account. The necessity to apportion the interest allowed by the bank and the income received from investments may be cantirely remored by crediting the interest allowed by the bank, as well as the income received from the investments, to a sinking fund interest suspense account. The suspense account should be debited with the total amount of interest which ought, according to the pro forma accounts, to be credited to the various sinking funds, and the balance remaining to the debit of the suspense account, will show the amount of the defiejence of interest to be debited to the revemue or rate arcount. By this means not mly will the amount standing to the red it of the sinking fund agree each year with the amount which should so stand aceording to the proforma aceount, but there will be the further advantage that each year's repeme or rate account will bear its proper burden and there will never arise any necessity to make provision for a large deficiency in any sinking fund caused by an accumutation of
many annual defieiencies in the income which ought to have accrued to the fund.

This method of keeping separate sinking funds for each year's borrowings is not recpuired in the case of loans issmed by way of a stock redeemable at a fixed date, seeing that the repayment of the loan is not spread over a number of years equal to the number of years occupied by the borrowing.

A loan borrowed over a series of years repayable in one sum at a fixed date will be considered in the next chapter, and, for the sake of comparison, the figures used in this example will be further utilised.

CHAPTER XXIX.

SINKING FUND PROBLEMS, RELATENG TO THE DATE OF BORROWING AND THE REDEDPTION PERIOD

Whthott any complication as regards the life or deration of continuling totility of the asset created out of the loan (continued).

Loay borrowed over seteral years, in one sum in fach year, repayable in oxe sum or a certain spectified date:

1. Where the date of repayment is hyown at the thme the money is borrowed.
2. Where the dite of repayment is fined after the sinting futid has been in operation for a number of ye.irs, and an adjustmext of the fund is requtired.

Summary of the methods of adjustment.

(1) Summary of the method of ascertaining, at the end of the period of construction, the future or amended equal ammual instalment to be set aside and added to the amount now in the fund which has been procided by the acemmulation, during the period of constrution, of temporary instalments set aside in respect of amounts borrowed over a series of years, all of which were, and still are, repayable in one sum on a certain specified date which was known at the time the money was borrowed. The problem is not complicatod by any rariation in the period of repayment due to the life of the asset.
(1) Asertain from the actual records the amount standing to the ceredit of the fumb, at the time the adjustment is required to be made. Statement SXTX B.
$($ (9) C'alculate the amomut of loon which will be provided at the end of the uncerpired repayment period, by the aremmulation of this amomen now in the fund, at the future rate of acrumulation.

Standard C'alculation Form, No. 1.
(3) Deduct the amount so found, as in (2), from the amount. of the original loan.
(4) The remainder will represent the balance of loan to be provided by the accumulation, at the future rate, of the required amonded annual instalment to be added to the fund during the uncapired repayment period.
(5) Calculate the ammal instalment so required.

Standard Calculation Form, No. 3x.
(6) The ammul instalment so ascertained should be equal to the sum of the several amual instalments alpeady set aside in respect of the amounts borvored in each year provided there is not any variation in the period of repayment or rate of accumulation. Table NXIX A.
(7) An!y variation between the ammal instulment so ascertained, as in (5), and the sum of the several anmual instalments alrealy set aside will be due to all abmormal past aecumulation of the fund, and will result in a surplus or defiriency in the amount of loan to be provided at the end of the repayment period.
(S) Such surplus or deficiency (if any) in the amount of loan to be ultimately provided should be rovercted in the mamer alredyly dessribed under these heads in provious. chapters.
(9) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended comditions. Statement XYIX. B.
(10) Prepare the usual pro forma acomut.
(2) Sumadry of the method of ascertaining, at some future time, the future or amonded cqual ammal instalments: to be set aside and added to the amount now in the fund which has been provided biy the accumulation of previous instalments. set aside in respect of loms borromed orer a series of years, all of which were originally repayalle at the end of successive years, but which are now repayable in one sum on a certain date now for the first time specified. The problem is not complicated by any cariation in the period of repayment due to the life of the asset.
(1) Ascertain from the actual records the amount standing! to the eredit, of the fund at the time the adjustment is required to be made.

Table NX/X I).
(2) Calrulate the amount of loan which will be provided at the end of the unexpired repayment period by the aceumulation of this amount now in the fumd at the future rate of accumulation.

Standard Caleulation Form, No. 1.
(3) Deduct the amount so found, as in (?), from the amount of the original loan.
(1) The remainder will represent. the balance of loan to be procialed b!y the acrumulation at the future rate of the required amended equal anmual instalment to be added to the fund during the unexpired repayment period. in substitution for the amnual instalment, as originally set aside.
(5) C'alculate the anmual instalment so required.

Standard Calculation Form, No. B.r.
(6) Prepare a statement showing the final repayment of the loan by the operation of the sinking fund under the amended conditions.
(i) Irepare the usual pro forma account.

The loans about to be considered differ from the preceding example only in the fact that, although the borrowings are spread over a series of years, the loan is repayable in one sum instead of at the end of successive years corresponding to the number of years during which the money was borrowed. The enquiry is still limited to loans in respect of ontlay having a miform period of repayment. The date of repayment of the loan is generally prescribed in the original sanction or anthorisation, and may be either (1) a specified date, (2) a definite number of years from the date of the sanction, or from the commencement of operations, or (3) a given number of years from a date later than the sanction: or, in other words, a deferred sinking fund. On the other hand, the date of reparment may be fixed by the local anthority or by Parliament some years after the loan has been borrowed and a sinking fund or fumbs established. This may arise on the comsolidation of existing loans, and also under the following or other similar conditions. A local authority has obtained powers to construct certain works and to borrow on loan, and the power or sanction provides that the loan shall be repaid in 25 years from the dates of borrowing. The actnal construction of the works extends over a period of three years, and such an amount only
is borrowed in each year as will pay for the works actually constructed in that year. At the end of three years the works authorised are completed and the full amount of the loan has been borrowed. During the period of coustruction the proper instalments have been regularly set aside out of revenue or rate, to provide the amount of loan repayable at the end of each of the prescribed periods of 25 years. The local authority then decide to convert the loans into stock redcemable on a fixed date.

This date may be specified under further powers granted, or may be fixed by the local authority at the time of making the adjustment.

The above instances may be divided into two classes requiring different treatment, although the loan relates to outlay of one character only, namely :-

Class I. Loans in respect of which the date of repayment is known at the time the money is borrowed, and
Class 2. Loans in respect of which the date of repayment is fixed after the sinking fund has been in operation for some years, and an adjustment becomes necessary.

The method of making the adjustment, howerer, rather than the canse of the adjustment, is the principal object of enquiry.

Class I. Loans in respect of one class of ontlay ouly, borrowed over a series of years, repayable in one sum on a specified date, which date is known at the time the money is borrowed.

The first example will relate to a loan raised by the issue of stock repayable on a speeificed date. The artual borrowing is spread aver three years (the period of construction of the works), and the period of repayment is 25 years from the commencement of operations. It will be assumed for the purpose of simplifying the conditions, that the local authority has borrowed the money immediately prior to the begimning of the financial year and that work has been commenced on that date. Subsequent borrowings are made on the first day of the two following financial years, and there is not therefore any complication due to the loan being borrowed at various dates in any one year.

The rate of accumulation of the sinking fund is $3 \frac{1}{2}$ per cent.

Although it is requisite to keep only one sinking fund, separate calculations must be made of the annual instalments to be charged to revenue or rate, and added to the sinking fund, in respect of each amnual amount of loan borrowed. The complete conditions are shown in the following table:-

TABLE XXIX. A.

Loan of $\pm 11,355$, borrowed over three years, repayable in one sum on a specified date.

Annual instalments calculated for varying periods, all to mature on the same date. Rate of accumulation $3 \frac{1}{2}$ per cent.

$\underset{\substack{\text { Year of } \\ \text { borrowing. }}}{ }$	liedpeny,tion	$\begin{gathered} \text { Amount } \\ \substack{\text { Amrowed } \\ \text { eacrlı year. }} \end{gathered}$	$\begin{gathered} \text { Annual } \\ \text { instalnent } \\ \text { on veary } \\ \text { oorrowing. } \end{gathered}$	$\begin{aligned} & \text { Innual } \\ & \text { intstant } \\ & \text { At and ont } \\ & \text { eath of } \\ & \text { each yar. } \end{aligned}$
First.	25 years	3,755	97176	$97 \cdot 176$
Second.	24 years	3,255	10:3:29	$\mathfrak{2 0 0} 403$
Third.	23 years	3,755	$1098: 36$	310239
		11,355	310239	

It will be noticed that the loan is borrowed in equal annual amounts during the period of construction, and that the ammal instalments in respect of the several amounts borrowed are gradually increased owing to the reduction in the period of repayment. The instalment to be set aside at the end of the first year is $\pm 9 \cdot 176$ only and increases until the end of the thind year when it attains the maximum of $\pm 310: 339$, which will be continued for a further \mathfrak{D} gears when the amount in the sinking fund should be $\pm^{\prime} 11,355$, provided care has been taken, at the end of each rear, to see that the fund has aceumulated at the proper rate in accordance with the proforma account which should have been prepared.

In this instance there is not any decreasing instalment during the later rears of the repayment period as was the case in the previous example, Table XXVILI. B, seeing that although the borowing is sprat ower three years the instalments are calculated on the basis that the whole of the loab will mature on the same date. The final repayment of the loan is shown in the following statement:-

Loan of $£ 11,355$, borrowed over three years, repayable in one sum on a specificed date.

Showing the final repayment of the loan by the operation of the sinking fund and the annual instalments shown in Table XXIX. A.

Amount in the fund :-
At end of first year, instalment £97•176
At end of second year : -

> | Interest, $: 3 \frac{1}{2}$ per cent. |
| :--- |
| Instalment |
| ... |
| $£: 300401$ |
| 403 |

$£ 20: 804$
む! 300.980
At end of third year:-
Interest, $3 \frac{1}{2}$ per cent. ... $£ 10 \cdot 5: 4$
Instalment $£ 310 \backsim 39$
£゚20.753
Amount in the fund at the end of the thind year ... $£(621.75 ;$
At the end of the 25th year the amount in the find will be as follows:-
Amount of $\pm 621 \cdot 553$ for 22 years at $3 \frac{1}{2}$ per cent. per anmum. Standard ('alculation Form, No. 1 $\pm 1305 \%$
Amount of $\pm: 30 \mathscr{2} 99$ per ammun for \mathfrak{N} years at $3 \frac{1}{2}$ per cent. per annum

> Standard C'alculation Form, No. .3 $\frac{£ 10029 \%}{}$ Total amount of loan $\ldots \quad \ldots$ \ldots

Class 2. Loans in respect of one class of outlay only, borrowed over a series of years repayable in one sum on a sperified date, such date of repayment being fixed after the sinking fund has been in operation for a number of years and an adjustment is required.

The second class of loans borrowed over a series of years will now be considered, namely, those in which the date of repayment of the whole of the loan is fixed after the sinking fund has been in operation for some years, prior to which time
each year's borrowings were repayable at the end of successive years. In such a case it is necessary to make an adjustment in order to ascertain the future annual instalment to be added to the sinking fund during the whole of the newly ascertained redemption period, in substitution for the varying instalments, as shown in Table XXIIII. B. This adjustment depends upon two factors, namely, the amount now in the fund, and the exact date fixed for the redemption of the whole of the loan. Seeing that the loan in Table XXVIII. B. was originally repayable over a series of four years, and is now repayable on one uniform date, it is advisable to adhere as closely as possible to the original conditions as to repayment, by expediting the repayment of part of the loan and delaying the repayment of an equivalent part. In fact there is here a mild form of the equation of the period of repayment, and an average equation of two years will be adopted since the present example is chosen to illustrate the method of making the adjustment rather than to demonstrate the proper mathematical method of finding the equated period of reproment. This will be fully considered in Chapter XXXII, where it will be shown that the ordinary arithmetical method of finding the equated period is ineorrect, but not to such an extent as to make any appreciable difference in two years seeing that in such caleulations the nearest whole number of years is adopted.

In the following example the original conditions as to the amounts of loan borrowed, and the annual instalments required, are the same as in Chapter XXVIII, the only difference being that the loan is repayable in one sum instead of at the end of four sucessive years. The following table contains the original conditions in the example now under consideration, and, as regards the actual figures, is a copy of Table X X IIII. A.

TABLE NXIN. C.

Loan of $\mathfrak{E}^{2} 26,495$, borrowed orer four years, repayable in one sum on a specified date fixed after the fund has been in operation for a number of years and an adjustment is required.

Original ammal instalments all aulculated to mature in 25 years, but at the end of successive years. Rate of accumulation : $: \frac{1}{2}$ per cent.

This table is a copy of Table XXVII A.

Year of borrowing.	Redemption period.	Proportion borrowed each year.	Amount borrowed each year.	Annual instalment on yearly horrowing.	Annual instalment at end of each year.
Firsi.	25 y ears	$2 / 14$	3785	$97 \cdot 176$	97.176
Serond.	95 years	$3 / 14$	56775	$145 \cdot 76$.	$\because 4 \cdot 9+0$
'Thist.	25 years	$4 / 14$	75\%0.	194353	$4: 769 \%$
Fourtle.	$\because 5$ years	$5 / 14$	9 $+6 \times 3$	$24 \sim 941$	680 $2 \cdot \pm$
			26.135	$68(0 \cdot 2: 14$	

Tables XXYIII. A, and XXVIII. B show the ammal instalments to be set aside to repay the above loans at the end of the 25 th, 264 , 2 2th and $28 t h$ years.

As stated in the pretiminary remarks in this chapter, during. the 5th year circumstances arise which render it necessary to provide for the repayment of the whole of the loan on one date, instead of at the end of 4 successive rears, and it will be assumed that the end of the 26th year is adopted as the redemption date. Four separate sinking funds have been kept and each fund stands at the proper amonat shown by the pro forma accomet. This means that the aceumulation of carch fund hy way of income from investments has been equal to the ralculated amount, or that any deficiency has been made grood rear by year out of revenue or rate.

In case there is a deficiency or a surplus in the fund at the time of making the adjustment it may be acomrately atjusted if neressary by the methots fully deseribed in previnus chapters, but as a general rule maless the discrepancy is of large amoment it is merged in the general adjustment about to be made. In ordinary practice of course the present position of the fund is ascertained from the actual records or books of account, but in the present example the amount in the fund must be found by actual calculation.

The first step, therefore is to ascertain the amounts which should stand to the credit of each of the individual sinking funds relating to each of the four vears borrowings at the end of the fourth year, this being the date when the maximm instalment has been set aside in respert of the full amount of the loan which has then been bormwed.

This may be done hy the following arithmetion walculation which is somewhat shorter than by the tables and logarithms and which has the further adrantage that it shows, althongh in decimal form, the actual entries in the ledger.

TABLE XXIX．D．

Loan of £゙2 6,495 ，borrowed over four years，repayable in one sum on a specified date fixed after the fund has been in operation for a number of years，and an adjustment is required．
Separate sinking funds．The amount in each fund at the end of the fourth year，will be as follows：－

Amount set aside at the end of the financial years．		sinking Funds in respect of loan horrowed at the beginning of the following financial years．			
		$\begin{aligned} & \text { First. } \\ & 97 \cdot 1 / 6 \end{aligned}$	Second．	Third．	Fourth．
First Second	Instalment Interest Instalment				
		： 401			
		95176	145064		
Third	Interest Instalment	197．75：	145.764		
		6.921	510%		
		$97 \cdot 176$	145.764	194：353	
Fourth	Interest Instalment	301.850	296630	194353	
		$10 \cdot 565$	10：38：	$6 \cdot 802$	
		97176	145964	194353	242941
		409591	45ご\％6	：395508	242941
					395.508
					452「76
					409591

Amonnt standing to the credit of the fom sinking funds at the end of the fourth year of borrowing ．．．．．．．．．．．．さ1500．816

The accuracy of the above calculation may be proved by assuming that only one sinking fund had been kept．Although this is not recommended in the rase of a loan repayable over a series of years，there is an adrantage in kepping only one fund where the loan is reparable in one sum provided a pro forma account of the operation of the fund is prepared when the full amount of loan has been borrowed．The following table shows the amount in the sinking fumd at the end of the fom thear：

TABLE NXIN．E．
Loan of ${ }^{2} \times(6,495$ ，as above．
One sinking fund only．The amount in the fond at the end of the fourth year，will be as follows：－

At the time of making the adjustment fom sinking funds are in operation, all relating to the repayment of a loan of $£ 26,495$ borrowed in unequal amounts over a period of four years, and each year's borrowings are repayable in ' 25 years from the date of the original borrowing, the last portion of the loan being repayable at the eud of the 28 th year. The actual repayment of the total loan was originally spread over a period of t years, but under the new conditions it is required to amend the annual instalment of $£ 680: 234$ to be set aside for 21 years followed by decreasing instalments for 3 years as shown in Table XAITII. B. In place of these varying instalments required to repay the loan at the end of four successive years it is necessary to ascertain the amumal instalment which will repay the whole of the loan of $£ 26,495$ at the end of 22 years from the present time, bearing in mind that there is in the fund an amount of $£ 1500 \cdot 816$ which can be applied in reduction of the future annual instalment.

The amended amual simking fund instalment may be found in the following mamer which is similar in principle to the anmal increment (balance of loan) method described in Chapter XXII:-
Amount of loan, repayable in $\underset{\sim}{2}$ years from the present time
£゙26495.00
Deduct therefrom the amount of loan which will be provided by the accumulation at 3_{2}^{1} per cent. for $2 x$ years of the $£ 1500816$ now in the fund. By stamdard calculation form No. $1 \ldots$... ... $£: 3199 \cdot 07$
leaving a balance of loan of
£232959:3 to be provided by the accumulation at $3 \frac{1}{2}$ per cent. of the future amended annual sinking fund instalment to be set aside for $2 \mathscr{2}$ years.

This amended annual instalment as may be found by standard calculation form No. 3 x , is $£ 20059$.

Proof of the above Adjustment. In ordinary practice, of course, the best method of proving the above calculation is to prepare the usual pro forma accome so often recommended, showing the amount which should be in the fund at the end of cach year, and which is required in order to control the subsequent accumulation of the fund. This method, however, is unsuited to a work of this hature, and it is preferable to adopt a method of proof based upon actuarial principles.

To recapitulate the data. A loan of $\pm 26,495$ is repayable at the end of $\underset{\sim}{9}$ years, and there is in the sinking fund the sum of $\mathfrak{t}^{1} 1500816$ which will accommate at $3 \frac{1}{2}$ per cent. The problem is to ascertain the sinking fund instalment to be set aside and accmmatad for the remaining $2 \sim 2$ years.

The calculation is made in two stages as follows:-First ascertain the ammal instalment to be set aside and accumulated as a sinking fund at $3 \frac{1}{2}$ per cent. to provide $£ 26,495$ at the end of $2 \mathscr{2}$ years. This ammal instalment is $\mathfrak{£} 81954$.

The next step is to ascertain the ammal sum or annuity by which this instalment will be reduced by the amount of $£ 1500$ S 16 now in the fund, or in other words the amuity for政 years at $: 3 \frac{1}{2}$ per cent. which may be puchased by the above sum of $£ 1500 \cdot 816$. This anmal amount, using the author's standard calculation form No. 5 , will be found to be ± 9895.

The adjusted annual instalment therefore is:-
Annual instament to repay the loan of $\mathfrak{x} 20,495$ in
2! years £81954
less the reduction therein dur to the amoment of
$£ 1500: 816$ now in the fund $£ 9895$
Amended ammal instahmentas previonsly ascertained £200.59

In the forcgoing example it has been assumed that the amount of the loan remains unchanged and that the rate of acomulation of the fund and the indome from investments will continue to be $3 \frac{1}{2}$ per cent. as in the original example in Chapter XV. The only variation is in the period of repayment. The methods described in Chapter XXIV, variation in the period of mpatiment, camot be adopted because the amended ammal instalment bere requimed is to rephace four instalments to be set aside for varying periods instead of one instalment for one period. The method will apply equally to loans not raised by the issue of stock if the whole of the loans are repayable in one sum on a specified date.

CHAPTER XXX.

SINKLNG FUND PROBLEAS, RELATING TO THE DATE OF BORROWANG AND THE REDEMPTION PERIOD,

Without any complicition is regards the life or derition of continuing uthlity of the isset crented oft of the Lolx (contimued).

Low borrowed in one or more tegre in farying hmouts at TARIOCS DATES IN EACII YEAR, IND IT IS REQUIRED TIAT THE REVENLE OR RATE ACCOUNT OF EAC'II YEAR SHALL BE CIIARGED WITAI A PROPORTIONATE I'ART OF THE ANNUAL SINKING FUND INSTALMENT.

The actual borrowings in any one year (whether in respect of a loan borrowed entirely in one year, or borrowed over a series of years depending upon the period of construction) are often made at varions dates during the year because the money is not required or is not readily obtainable. To carry out the strict letter of the obligation to repay the loan at the end of a prescribed number of years from the date of borrowing would be practically impossible if each individual borrowing had to be treated separately. The general practice is to treat all the sums received in any one rear as if they had been borrowed at the end of the financial year and not to set aside any sinking fund instalment in respect of the broken period of the year of borrowing, the provision of the first full annual instalment being deferred mitil the end of the succeeding financial year, which simplifies the working of the fund very considerally. In the case of a small loan borrowed piecemeal in this fashion in one year there is not any great objection to outweigh the manifest advantages; and the same applies to loans borrowed over a period of years during construction in which the ammual amount borrowed is not large. The principle of deferring the first annual contribution has been extended by Parliament in certain cases, where the operation of the sinking fund has been suspended for a specificd number of years.

But it may happen in the case of a local authority or a commercial or financial modertaking that the loan is of large amount and may be borrowed during one year. It may be necessary and equitable in such a case to charge the revenue or rate account of that year with the proper calculated proportion of one year's anmual instalment in respect of each separate borrowing, hased upon the part of one year for which the undertaking has had the use of the money raised during the year, and not defer the first annual contribution until the end of the surceeding year.

Such an instance might arise in connection with the purchase of an existing undertaking by a local authority where the purchase money is payable by instalments spread over a year and is borrowed as and when required, but the local authority enters into possession immediately and takes the whole of the profits. If no contribution to the sinking fund were made during the first year the revenue or rate account of that year would show a fictitions profit as compared with subsequent years. In such a case it would appear not only equitable but gool accounting practice to charge the revenue or rate account of that year with a portion of the anmual instalment commensurate to the amount of loan it has had the use of during part of the year.

In the case of a commercial undertaking the revenue account for the year would of course be charged with interest upon the loan for the exact number of days the money had been borrowed, and the same would apply to the revemue account of a local authority where the accounts are kept upon the "income and expenditure" as distinguished from the "receipts and payments" system.

If the principle applies to interest upon the loan, it should certainly apply to the anmual contribution to the sinking fund, especially in the case of a local authority where both amounts are spectifie charges against revenue or rate. In the case of a commercial undertaking the conditions as to a sinking fund are much more elastie than is the case with the loans of local authorities, and much would depend upon the athal conditions laid down in the deed governing the loan, which would be taken into account by the auditors before certifying the accounts.

Tn the case of local authorities it is impossible to lay down any hard and fast rule. The conditions imposed upon such authorities have of late years been of a miform mature depending upon the probahbe life of the asset, hut where powers are granted by special Act of Parliament wider latitude has often
been allowed, and the special nature of the powers requires careful scrutiny in each case. Attention may, however, properly be dirceted to the magnitude of the loan; in some instances the amount involved may be considerable, and may point to the necessity of making some such adjustment, but to insist upon it in all cases, irrespective of the amount of the loan, might, and possibly would, involve considerable labour without any corresponding adrantage.

With regard to the actual adjustment, there are several interesting points, and the problem is not so simple as it appears at first sight. To find the actual proportion of the annual instament to be charged to the revenue account of the year of borrowing it is first necessary to ascertain the amnual instalment to repay the total loan horrowed, having regard to the redemption period imposed. Seeing that an adjustment of this nature is rarely made in the case of small loans, but is confined to loans of considerable maguitude, it is very important that the calculation should be made with extreme accuracy. Such large loans are generally raised by the issue of stock redeemable on a fixed date, and it often happens that the total amount of the loan is borrowed over a period of years, rendering it necessary to make a similar calculation of the proportionate part of one year's ammal instalmeut at the ead of each year of borrowing. In this manner varying amounts are added to the fund each year, whicll departs from the normal growth of a sinking fund by equal annual instalments. This will render it necessary to set aside each year what may be termed temporary instalments, and to adjust the fund when the whole of the loan has been raised, by ascertaining the exact equal annual instalment required to be set aside during the remaining years of the redemption period to repay the loan on the preseribed date, having regard to the amonnt in the fund at the time of making the adjustment.

The problem will be illustrated by a sinking fund to repay a loan of $£ 11,355$ in one sum, on a specified date (namely, at the end of 25 years) with a rate of accumulation of $9 \frac{1}{2}$ per cent., the loan being borrowed in three equal annual sums of $£ 3, \pi 85$. These amounts are borrowed at various dates during the several financial years, and it is required that the revenue or rate account of each year shall be charged with a proportionate part of the sinking fund instalment in respect of the moner borrowed during the year.

A similar loan has already been used to illustrate the example in Chapter XXIX, in which case the money was
supposed to be borrowed on the first day of each financial year, and the conditions shown in Table XXIX. A. will be adopted in the present instance in order to show the effect as compared with that example, although the amounts are small. But the priuciple is the same, and the effect upon a larger loan will be readily appreciated when it is remembered that, given the same number of years and rate of accumulation, the amual instalment is always proportionate to the loan.

A further imaginary factor must be assumed, namely the precise date or dates in each year on which the loan was raised

It is more than probable that the loan borrowed in any one year will be raised in more than one sum. In such cases it is sufficiently if not quite correct to proceed by the arithmetical method and multiply the several amounts borrowed by the number of days between the respective dates of borrowing and the end of the financial year. The sum of these products divided by the total amount borrowed during the year and the result again divided by 365 is the proportion of the year required.

The following example will make the matter clear:--

TABLE XXXA.

To ascertain the proportion of the annual instalment in respect of the amounts borrowed during one year.

The Arithmetical Method.

Date of borrowing.	Amount borrowed.	Number of days to end of financial year.	$\begin{gathered} \text { Product } \\ \text { of amount } \\ \text { X days. } \end{gathered}$
dannary ${ }^{\text {d }}$	$£ 100$	334	$3: 3,400$
Mareh 31	$\pm{ }^{2}$	245	49,000
June 30	$\pm: 300$	184	55,200
September 30	± 400	$9:$	$\because 6,800$
Total	$£ 1000$		174,400

The equivalent proportion of one year for which the undertaking has had the benefit of the $\mathfrak{£ 1 0 0 0}$ is arrived at as follows:-
$\frac{174,400}{1000}-365=\frac{1744}{365}$
and this proportion of the annual sinking fund instalment is chargeable against the revenue or rate acemont of the year of borrowing.

In order, however, to simplify the following calculation it
will be assumed that the loan was raised in each year in one sum, and that the local authority had the use of the money for the following portions of each year:-

First year one half of the year
Second year \ldots... one thind of the year.
Third year... one quarter of the year.
The exact dates of borrowing during each year have a very important effect upon the rariation in the ammal instalment dming the period of borrowing and the subsecuent period of repayment. If the amounts are borrowed during the early part of the year, the proportionate part of one year's instalment will be greater than if the money were borrowed during the later part of the year.

The complete conditions are shown in the following table:-
TABLE XXX 1 .
Loan of $£ 11,355$ borrowed over 3 years, repayable in one sum on a specified date, by means of an annual sinking fund instalment to accumulate at $3 \frac{1}{2}$ per cent. The reveme or rate account of each year to be charged with a proportionate part of the amual instalment in respect of the amount of loan borrowed during such year.

Annual amomits borrowed and yearly and proportionate instalments.

Year.	Amount horrowed.	Portion of year for which money borrowed.	$\begin{gathered} \text { Period } \\ \text { in which } \\ \text { repayable. } \end{gathered}$	Anmual instalment.	
				Yearly.	$\begin{gathered} \text { Proportionate } \\ \text { lart of first } \\ \text { year's instalment. } \end{gathered}$
First	3785	$\frac{1}{2}$	25 years	$97 \cdot 176$	48.588
Sreoond	:285	$\frac{1}{3}$	24years	103.927	: 4.409
Thind	:3785	$\frac{1}{4}$	2\% years	1098: 36	$27 \cdot 459$
	1,355			$310 \cdot 239$	

Note.-This table should be compared with Table XXIX. A.
The above anmal instatments are calculated for eren periods of 25,24 and $2: 3$ years respectively, and in the following example it will be assumed that they are set aside during the three years, at the end of which period the necessary adjustment will be made. This is the most prartical way of dating with the matter, although it may properly be rointended that the above yearly instaments should be shighty reduced in consequence of the proportionate parts set aside in respect of the year of borrowing. The main oljeet of the adjustment is to ensure
that the revenue or rate account of the year of borrowing shall be charged with a proper proportion of the sinking fund instalment rather than that subsequent years shall be charged to a fraction with the exact mathematical amount.

The following table shows the complete and proportional instalments which will be added to the fund during the three years, and the amount which should be in the fund at the end of the third year of borrowing. The broken year during which the first amount was borrowed is not included in the period of repayment, which is in effect extended by part of a year.

STATEMENT XXX C.

Loan of $£ 11,355$, borrowed over three years, repayable in onc sum on a specified date.

A proportion of each ammal instahment to be set aside in respect of the amounts borrowed during each year.

The amount in the sinking fund at the end of cach year of borrowing, will be as follows:-

Borrowivg begins

at beginning of first year of fund:$\frac{1}{2}$ of $£ 97 \cdot 176$, instalment, first rear... 48.588

Repifment perion hegias
at end of furst yroar of fund:-
Interest on $£ 45.588$... 1.700
Instalment, first year 9\% 176
$\frac{1}{3}$ of $£ 103 \cdot 22 \mathrm{i}$, instalment, seroml year 34409
189285
$181 \cdot 87.3$
at end of serond year of fund: -

Borrowing ceases

```
at. end of thiral year of fund:-
    Interest on £ £16;101 ... ... ... ... 14564
    Instalment, first year ... ... ... ... 97.176
    Instahment, second rear ... ... .. 10:3297
    Instalment, third year ... ... ... 1098:%6
```

 324:80:;
 Amount in the fund at the end of the third year ... $£$| fr $40 \cdot 904$ |
| :--- |

The above amounts credited to the sinking fund are contributed as follows:-

First year of borrowing	('harced to aceonnt aceomin	$\begin{gathered} \text { Interest } \\ \text { from } \\ \text { investments. } \end{gathered}$	Total.
	43585	-	48.588
First year of repayment period	1:3154.5	1-700	1:32985
Second year of repayment period	92-86\%	6366	$2: 9298$
Third year of repayment period	:109:39	14.564	: $22+80: 3$
	\%1sNit	290 60	i40:904

as compared with the previoms example in Statement XXIX B. :

First year of reparment period	9.176	-	$97 \cdot 176$
Second rear of reparment perine	$\because 00$ 40:3	3401	20:3804
Third year of menayment period	:30, $0 \cdot 9$	10534	: 200 -
	607-818	1:9935	621.753
or a supplu of ...	$1110 \cdot 4.96$	$8 \cdot 695$	119151

There is in the fund at the and of the thind year
the sum of £「40904 as compared with the previous example,

Statement XXIX. B. £6?1.75\%

being the accumulation of the proportionate parts of the instalments set aside in respect of the years of horrowing, as may be rerified by a similar calculation.

Seeing that the loan is the same in amount and the mexpired period is $2 \mathfrak{2}$ years in each case this smplus will tend to reduce the anmual instalment of $£: 310: 2: 39$.

The reduced ammal instalment may be found in the following manner which is similar in principle to the amnal increment (balance of loan) method described in Chapter XXII:-

Amount of loan repayable in $\mathfrak{2 D}$ years from the present time
$£ 11355 \cdot 00$
Dcduct therefrom the amount of loan which will be provided by the accumulation at $3 \frac{1}{2}$ per cent. for $2 \mathscr{2}$ years of the $£ 340.904$ now in the fund. B_{y} standard calculation form, No. $1 \quad \ldots \quad \ldots \quad £ 155924$
leaving a balance of loan of \ldots... £97ヶ5.76
to be provided by the acrumulation, at $3 \frac{1}{2}$ per rent., of the future amended annal sinking fund instalment to be set aside for 22 years.

This amended annual instalment, as may be found by standard calculation form, No. $3 x$, is £302•38

Proof of the above Adsestment. The aceuracy of the above adjustment may be proved in a similar manner to that adopted in Chapter XXIX. A loan of $£ 11,255$ is repayable at the end of $\mathfrak{2 g}$ years, towards which there is in the fund an amount of $£ \begin{array}{r} \\ 40 \\ 90\end{array}+$, which will accumnlate at $3 \frac{1}{2}$ per cent.
The ammal instalment to repay the loan of $£ 11,355$ in 22 years at $: \frac{1}{2}$ per cent., as may be found by standard calculation form, No. ix, is £:551:2?
but the amount of $£ 540904$ now in the fund is equivalent to an ammal instalment for the same period, as may be fom by standard calculation form, No. 5, of ...
£48•85
leaving a reduced ammal instalment, as previously ascertained, of
$£ 302: 38$

Two methods have now been described of repaying a loan of $£ 11,: 355$ (bormwed wer a period of $?$ years) at the end of 25 years muler two sets of conditions, namely:

A, where the annual instalment is set aside at the end of the financial year following the year of borrowing, and the revenue or rate account of the year of borrowing is relieved of any charge in respect of the sinking fund instalment. Chapter XXIX, Table XXIX. B.
B, where the revenue or rate account of each year of borrowing is charged with a proportionate part of the annual instalment.

Chapter XXX, Table XXX. C.
The annual charges to revenue or rate account in each case may be usefully compared by means of the following table:-

TABLE XXX.D.

Loan of $£ 11,355$ borrowed over three years, repayable in one sum on a specified date.

> A. Annual instalments only. Table NX/X.B.
> B. Annual and proportional instalments.
> Table NXI. C.

Comparison of the annual charges to revenue or rate in respect of the sinking fund instalment.

Amount charged to the revenue or rate account.	Where A horrowing is relieved of any charge in respect of the sinking fund instalment Table XXIX. B.	Where the year of borrowing is charged with a proportionate part of the sinking fund rable AXX. C.	Excess of B. over A.
First year of borrowing ...	Nil	48.588	48.588
First year of repayment period	$97 \cdot 176$	131585	$34 \cdot 409$
Second year of repayment period	$200 \cdot 40: 3$	22\%-862	$22 \cdot 459$
Third year of repayment period	:310:2:99	$310 \cdot 239$	Nil
Total	$607 \cdot 818$	$718 \cdot 274$	$110 \cdot 456$
each of the subsequent 22			
years of the repayment period	$: 10 \cdot 239$	$: 302 \cdot 380$	$7 \cdot 859$

The effect of charging the reveme or rate accomit of the jear of borrowing with a proportionate part of the sinking fund instalment instead of defering any charge to the end of the following financial year may be summatised as follows:

The charge to revemue or rate account is antedated by one year to the extent of the proportionate instalment in respert of the first year's borrowings, and the same applies to each year during which the borrowing takes place. The difference between the two methods affects only the revenue or rate accounts of the years of extended borrowing, but as the first broken year of borrowing is not included in the repayment period, the anmal instalment charged to revenne or rate in the third year of the fund is the same in both methods.

Having thus charged the earlier years with a greater part of the repayment burden, it is obrious that the later years will be correspondingly relieved, and the above table shows this: to be the case. But the increased burden to revemue or rate account during the years of bornowing is spread orer a smaller number of years than the relief is obtained during the remander of the repayment period, in comseguence of which the effect is to charge the revenue or rate accounts of the years of borrowing with a far greater ammal amomet than that by which subsequent years are relieved.

In the above example the three reans of borrowing are charged with an additional amome of $\mathfrak{t l 1 0} 456$, w an average
 relieved to the extent of ETC859 per ammom me.

The above amonents of additional burden during the earlier years and the corresponding amomets of relief during the later years must not be accepted as an exact ratio which will apply to all axamples of this mature, because the dominant varying factor in the forgoing adjustment is the actual date or dates in carly year upon which the loan was homowed. If the loan had beem bormend on the first day of the financial year the two methods would yield exatly similar results, but if the loam had been borrowed during the carly pat of the previous year the results wond have shown mud more variation than the a merage example used to illustrate the subjeet.

The necessity to maks an adjustment of this matume therefore depends, primarily, upon the magnitme of the loan, and seromdly, upon the pertion of the year duriug which the money bomerwed has been utilised.

Section VI.

The Life or Duration of Continuing Utility of the Asset Created out of the Loan, and its Relation to the Redemption Period and the Incidence of Taxation.

CHAPTER NXXI.

Abstract

 OF THE ASSET (REATED OET OF THE LOAN, AND ITS RELATGN TO THE REDEMPTHN PERIOD AND THE INCLDENCE OF TAXATHON.

In the case of the loans of municipal or other local authoritios, there is a further factor which requires serious consideration, mamely, the periods allowed by P'aliament (ar the Government Department concerned) for the repayment of loans authorised for differchit classes of outlay having longer or shorter lives or periods of duration or atility, and this variation in the life of the anset may in its turn react upon the period over which the loan! is bimpowed or is repayable. This factor gives rise to the necessity to equate the period during which loans shall be repayable depending upom,

1. The life of the asset and the consequent period of repayment.
2. The date or dates of berrowing, whether in one year or spread over a period of years.
3. A combination of both periods, namely, of borrowing or repayment.

This is the most difficult problem in municipal finance, upon which there is much divergence of opinion, as is only natural considering the extended and complicated nature of municipal activity, which, as all who have paid attention to suck matters know, is ever widening.

Commmities have not any capital beyond the liability of each citizen of both the present and future generations to contribute his rateable proportion of the cast of the benefits which he receives from the joint efforts of the community. Such benefits are received by each citizen in each gencration year by year, and should be paid for ats and when received. In a primeral commmity individual benefit is paid for by individual labonr, but such an illal method of contribution can only exist in a small commmity, and the difficulty of
"pportioning the annual burden in a rapidly growing one is intensified in a far greater ratio thath the actual numerical increase of population.

Year by year, as the commmity grows, the problem beeomes more complicated. Works of public utility, which in a small community might be ignored or neglected, become of vital importance, and must be carried out, and in doing so regard must be had not only to the present requirements, but also to the future growth. It is obviously useless to undertake public works which it is well known will be utterly inadequate to provide for the needs of future generations, and provision must be made in adrance.

This increases the cost of all works of public utility, and involves the immediate spending of large sums of money which tamot he found by, and (amnot properly be charged against, the present generation of ratepayers, either at once or spread over comparatively few years. Such outlay can only be met by pledging the credit of the community for the purpose of raising a loan. Consequently the repayment of the loan must be spread over an extended period depending upon-
(1) the probable life of the asset upon which the money is expended;
$(\boldsymbol{\sim})$ the liability of future gencrations to provide further works of public utility which may then be required: and
(3) the judgment of those immediately responsible for the adequacy of the present outlay, including in such term not only the actual permanence of the work undertaken, but also the probability that future advancements in knowledge may render such works either inadequate in design or too costly in operation. This throws the responsibility of the actual outlay upon those who incur it, and it is now a gencrally aceepted principle that the cost of all outlay upon works of public utility should be written off, and the loans raised the refor actually repaid, out of cument revenue or rate during a period well within the life of the partienlar works to provide which the loan is borrowed. It is obvious, therefore, that the provision of public utilities adeguate to the needs of future generations in any individual community is far too great a burden to be imposed upou the present generation of ratepayers, and that this involves pledging the future credit of the community. By a parity of reasoning the increase in size and number of commmities, and the ever widening sphere of local activities, renders it imperative that the extent to which the present generation shall be allowed to
pledge the credit of the future should be treated not as a local but rather as a national question. It the present time, therefore, all loans raised by local authorities for purposes of public utilities are subject to the final approval of l'arliament, but owing to the enomons increase in thas direction P'arliament has beeu compelled to delegate its powers as to detail to Committees and to certain Govermment departments. This has been a very gradual process extending orer many years, during which time many Acts have been phaced upon the Statute Book, with the result that powers have been oltaned under both General and special Acts, and this has led to considerable difference in practice. The great disadrantage of this variation consists in the fact that the larger municipalities, instead of seeking powers under General Acts, may, in many cases, aroid the careful scratiny of the permanent Govermment departments (which now proceed upou regularly defined prineiples) by applying to Parliament for a Special Act. All such Special Acts are referred to Committees composed of members of both Houses of Parliameut, but there is not any continuity in the membership of such Committees, and as the permanent Government departmeuts are not represented thereon, there is not any uniformity of practice, and the result is seen in the extreme variation in the powers as to borrowing and repayment now existing. The present general policy of l'arliament and of the Govermment departments charged with the duty of fixing the respective periods of repayment operates in the direction of equalising the period of repayment and the life of the asset, although the conditions now in force vary considerably in individual cases for the reasons already stated.

This principle is of modern growth. In the early days of muncipal govemment, i.e., prior to 18ti, the Acts authorising expenditures upon public utilities did not impose any obligation of any kind to repay the loan out of annal rates to be levied upon the community, and there are to-day many loans outstanding in respect of which no such obligation exists, and the debt and the interest payable thereon may for all practical purposes be cousidered as a perpetual charge upon the ammal rates to be levied by the municipalities unless and until they voluntarily provide for its redemption by making anmual charges against revenue or rate. In some cases this provision has been made on the initiation of those responsible for the financial administration of the municipality, and in other cases such delayed provision has been imposed by Parliament as a condition precedent to the granting of further borrowing powers.

There is now, however, a considerable body of municipal opinion that where the money borrowed is expended in the purchase of land in or near the centre of a city, and the erection thereon of buildings of a substantial nature and of assured future utility, the asset may be considered as of permanent and in many cases even of improving value, and that there is not therefore any necessity to burden the ratepayers of the present or any future generation with any charge in respect of the redemption of the debt beyond the amual interest payable upou the loan which interest may, it is contended, properly be considered as the equiralent of an amual rent.

In support of an argment of this nature it is contended that local authorities maly, and very often do, occupy lands and premises as ordinary tenants, paying therefor the usual rents demanded by the owners of the property, and such tenancies may be of an annual nature or be by way of lease for a term of years. Such leases for years may be of short duration, but, on the other hand, they may, in certain districts, be for very long terms, possibly longer than would be granted by Parliament for the repayment of a loan authorised for the purchase of the property. In such cases it is obviously to the advantage of the local authority to acquire the property by way of lease rather than by purchase, secing that there will not be any burden in respect of the sinking fund instalment for the redemption of the loan. Especially does this apply to the acquisition of land or buildings which do not immediately require any large outlay or where the outlay is of such a character that it may be spread over a number of years and be met by tharging it direct to current amual revenue or rate, or where the annal outlay may be so arranged that it is less than the sinking fund instalment to be set aside to repay the loan necessary to be raised to purchase the property. Such conditions may not always exist, especially in the case of outlay in respect of land required for purposes of public parks or open spaces, or large public buildings, such as town halls, requiring a large expenditure upon buildings, but the principle is important and may be applied to the orrupation of land and buildings without imposing any burden upon the present and future generation of ratepayers for the arguisition of properties which may at any future time be replaced by others, which may be not ouly as cheaply acquired but may be more suitable for the purpose. As against this it is argued that land in the contre of a city reguired for the crection of a town hall, or land for public parks, increases rapidly in value, and at the end of a long lease the fine or
premium payable on renewal of the lease would be very large, and the probability of such a hurden being laid by the present upon the shoulders of a future gencration would certainly not be sanctioned by Parliament.

Markfts. The argument appears to be equally strong when applied to markets which gencrally ocoupy land near the centre of the city and in respect of which the cost of the land is the predominant factor, since the buildings are not usually of an expensive character. In aldition to the improving ralue of the site, markets are a source of revenue romsisting of tolls: upon produce and rents of floor space and huildings, which revenue, after providing for all charges, yields a surplus which is applied in aid of the rates levied upoin the general body of ratepayers. In most cases markets yield a surplus revenue over and above all upkeep charges, and it seems only proper that the present generation of ratepayers should out of such surplus revenue provide an annual instalment towards the redemption of the debt before applying any profits in aid of their amual rateable coutributions towards the upkeep of the rity.

Water. The provision of a permanent supply of pure water for sanitary and other purposes is the prime necessity of all communities for many weighty reasons, and demands special consideration. The paramount factor in this case is the imperative obligation to provide for the needs of the community for a umbler of generations far in exress of that requisite in the case of any other public utility: indeed, it may properly be contended that it is the duty of the present generation to ensure that a permanent supply of pure water sufficient for the needs of the commmity shall continue for acer. Methods of lighting, transportation, sewage disposal and other commmal necessities are being constantly improved, and any future improvements in such comparatively minor utilities may be carried out upon land already allocated to them and acquired by the municipality. But with water supply the conditions are the exact opposite. Owing to the rapirl growth of cities involving increasing demands for water for sanitary and manufacturing purposes, the natural areas suitable for the supply of water are being year by year continually encroached upon and reduced, and future improvements in methods of transportation will enahle manufacturing mocesses to be profitahle earried on far beyond the present city limits. Such conditions are farourable to the creation of rested interests in all land which is a
natural water area, and such rested interests will be scattered in such a mamer as to render their acquisition at some future time practically impossible even at any price. It is therefore the duty of all municipalities to protect and preserve all natural water areas for the public use and to expend moner upon the purchase far in advance of present requirements. There is here an obligation to pledge the credit of the community for the purchase of land and the construction of works to provide a sufficient supply of water to meet the maximum needs of the community, and yet the present policy of Parliament is to allow a shorter pieriod than formerly. Owing to the reasons already mentioned such land is continually increasing in ralue, and many existing water undertakings are now worth very much more than their original cost. It is therefore argued that the reparment of moner borrowed to provide the cost of land for water areas should be spread over a very long period of years, even if it he not treated as a debt in perpetuity.

The argument as to the large amount expended in the purchase of land is supported by the substantial and permanent character of the works erected thereon, and it seems at first sight sound policr to relieve the present generation of ratepayers from what appears to be an undue burden by spreading the redemption of the loan over a longer period than is at present allowed by Parliament. As against this it is pointed out that water works have failed, water areas have vielded a decreased and insufficient supply, and works which were once thought adequate have, owing to the large increase of towns. become insufficient and have had to be supplemented ber further ontlar. It is also contended that if the reparment of the debt be spread over a rere extended period the interest paid equals, and soon exceeds, the amount of principal. This is not in itself a rery grod reason against extended periods of reparment secing that its effect is to spread the burden over a greater number of gromerations who derive benefit from the outlay, provided always that the works continue to meet the needs of the commmity and subequent generations do artually derive a benefit therefrom.

But it is common knowledge that very few works of pulblie utility las for more than a certain number of rears. In some rases the rateable value of a district falls, hut in nearly all rases the future demand of the commonity increase so rapidly that it is imperation to put what may by some be termed an madue burden mon the present generation in order to aroid phacing an intalerable binden upon the future. The personal
element also enters largely into the matter, and it has been found that the surest, if not the only, way to eheck undue expenditure, if not extraragance, upon the part of local authorities is to convert each $£ 1,000$ of capital outlay into a definite proportion of the annual amount payable by the ratepayer by way of rate, and, further, to educate the ratepayer to appreciate this. There is also another interest to be considered, namely, the loanholder who finds the money and who, in a great majority of cases, has not any local interests. He looks solely to his security both for the ammal payment of interest and the ultimate repayment of his capital. His security consists partly of the assets created out of his money and partly of the ammal revenues derived therefrom, but in practice mainly of the future annual rates to be levied upon the community. Seeing that the value of the communal assets depends entirely upon the perpotual prosperous existeuce of the community, such assets have really no valur unless the community is able to pay the future ammal rates. A bankrupt or insolvent community, if not an absolute impossibility, would not be able to pay any serious percentage of its liabilities; and seeing that the security for its loan indebtedness is a mixed fund of capital and revenue, of which the latter is the chief, it seems not only reasomable, but just, that revenue or rate should bear the greater proportion of the burden. It follows, therefore, that the cost of the outlay should be repaid within the productive life of the asset and lie charged against the amnual rates levied by the local authority. In the case of revenue earning undertakings it may, not very unreasonably, be contended that any surphus profits should partially, if not wholly, be applied in redemption of debt instead of in aid of rate. If the whole of surh profits were applied in redemption of debt, it would aroid the present anomaly of towns with equal annual rates hut with widely varying expenditures, due solely to the fact that the excess expenditure in one case is concealed by the profit derived from trading departments. In the case of tramways this profit is fairly earned since there is a generally accepted level of fares all over the country, but in the case of gas and electric lighting undertakings there is such a wide divergence of charges as between different mumicipalities, that a very high charge, levied at will by the local authority, is called a profit, and is taken out of the pockets of one class of ratepayers, namely, the gas or electricity consumers, and applied in relief of the rates paid by the whole community.

The foregoing remarks deal very fully with waterworks as representing a datss of outlay which lends itself most readily to the argument in farour of a total abandomment of the anuual charge against revenue or rate in respect of the redemption of debt, or at least in farour of a reduction in the annual charge to the present generation of ratepayers to the possible and probable detriment of future generations. They will have their own burdens to bear both as to their then present, and future obligations. Any relaxation of the present, as some think, stringent regulations and practice will most probally give them in addition a past burden to bear, which, owing to the foresight of our local authority forefathers we have escaped. Consequently the modern Parliamentary practice is right, namely, to rectuire the redemption of the loan to be spread over a period well within the life of the asset created out of the loan and to differentiate between various classes of outlay in fixing the period to be allowed in respect of each.

Outlay on Manefacturing Plants. So far the enquiry has been confined to capital outlay upon publie works in which the greater part of the cost is for land, which rarely depreeiates, and rery often appreciates in ralue, or for buildings for which a very long lifn may reasomably be expected seeing that judicions outlay upon repairs will prolong the life considerably. There is, however, a further class of outlay of a much more complex nature where the proportion of the original eost attributable to land is comparatively small, and the greater part of the outlay is in respect of buildings, motise power, plant and machinery, including in the latter term ererything in the nature of an engine, gas making plant, tramway plant, eleetrical generating marhines and all the subsidiary works required. The necessity to excmere careful control orer such outlay arises from the fact that as the element of a probable appreciation in value decreases, it is requisite to provide for the very opposite comditions, mamely, a probable fall in value due to two causes, first, a gradual wasting of the asset due to wear and tear (which ramot be met by current repairs and renewals (harged to revenue aceomet) and the further probability that future adranes in seiontifie and meehanical knowledge may result in the diseovery of new and improved methods long before the original plant, etce, is worn out and the loan repaid. Local anthoritios as well as commereial rencerns are lere confromted with a difficult problem and have catefnlly to consider whether it is advisable to diseard the
present obsolete plant which is costly in operation and deficient in productive power, and replace it with more modern plant, relying upon the saving in working charges and the increase in production to recoup the anmual burden imposed by installing the modern outfit. In such an event there is a wide difference between the conditions existing in the case of a commercial undertaking and a local authority. A commercial undertaking may set aside any part of its profits and so accumulate a reserve fund of unlimited amount for such a contingency; whereas, as a general rule, a mumicipality is restricted as to the amount which may be so set aside as a reserve fund, as distinguished from a renewals fund. If a commercial concern requires to undertake outlay of this nature there are not any statutory or other difficulties in the way provided the credit of the undertaking is good; and it is not always under any obligation to set aside part of the profits towards the redemption of debt. On the other hand, a local authority is bound by Statute to charge its annual revenue or rate account with a fixed sum to be applied in redeeming its loan indebtedness, and such obligation may not be released without the consent of Parliament. Any further borrowing powers required to replace obsolete assets or outlay hefore the original loan is repaid, have to be granted by Parliament, and very severe scrutiny is made into all the circumstances, because the grant of further powers will lay a double burden upon the community until the original loan is repaid. All this tends to support the present practice of Parliament, namely, to fix the period of repayment at a number of years well within the life of the asset; in other words, to make the annual charge for the redemption of debt a little more than equivalent to the normal rate of depreciation which would be charged to revenue, or profit and loss, account by a prudent trader. This practice supports the view that in the case of a local authority there is not any necessity, in respect of original outlay, to charge the revenue account with depreciation or wear and tear in addition to the sinking fund instalment. This question of depreciation (or wear and tear) should be kept entirely distinct from the provision of a gencral reserve fund to make good any capital losses due to obsolescence, or to the provision of a renewals fund to meet repairs which cannot be made year by year, such as the periodical relaying. of a tramway track. The statement that the sinking fund instalment takes the place of an amual charge for depreciation reguires important modification in one respect. It has been stated that an anmal charge for depreciation may be omitted
in the case of original outlay only. The case is different when once the original loan has been repaid and the asset becomes the property of the local authority free from any debt and without the necessity to set aside any amual instalment, or to pay any interest upon the loan. It should here be remembered that under the sinking fund method of repayment both these annual charges are a burden upon the revenue or rate account of each year of the repayment period, and that this anmmal burden is equal during the whole of the period, seeing that although part of the loan may have been repaid out of the sinking fund, ret the interest upon the amount of loan so repaid must be charged to the revenue or rate account and added to the fund. On the final repayment of any loan the revenue or rate account is immediately relieved of a heary annual charge, consisting of the instalment and interest upon the loan, and the local authority is in possession of an undertaking which has been provided out of the revenue or rate of previous years, and in addition maintained in a state of efficiency by annual repairs and renewals, and very possibly kept up-to-date by improvements defrayed by means of additional charges to revenue or rate.

It is therefore equitable to assume that it is obligatory upon future generations of rateparers to ensure that this asset shall be maintained by them in an efficient state, as far as possible, but since any expenditure upon repairs and renewals cannot prevent a further loss in ralue, such wastage should be made goor by charging future years with an ammal sum in respect of depreciation. This is a matter which is frequently orerlooked, but it is wortly of serious consideration. When, in spite of all repairs and renewals, the asset becomes valueless, or so nearly so that it camot be worked at a profit or economically, it must be replaced and the depreciation fund in hand may then be applied in relief of the cost of the new works, leaving only the balance to be raised be further borrowing.

Section VII.
The Equation of the Period of Repayment.

CHAP'TER XXXII.

The equation of the period of hepaymext of loans repayable at various dates which are required to be redeemed on one uniform date:-

1. Where the loans are authorised in respect of outlays of varying cilaracter, eacil having a different life or pleriod of continuing utility and corsequent reldyiment.
2. Where the negessity to find the equated period of refayment arises on the consolidation of existing loans.

The arithmetical metiod of finding tie equated reriod known as the equation of payments, the thee or mathematical method; and the error in the generally adorted arithmetical method.

The Necessity for the Equation of the Period of Repayment. In the early days of municipal loans they were relatively small in amount as compared with what they are at the present day, and as a general rule each loan was sanctioned for a specific purpose and related to one rlass of outlay only. When a sanction or authorisation included several classes of outlay a definite amount of loan was authorised, and a definite period was prescribed, for each class, carrying out the provision in Section 234 (1) of the Public Health Act of 1875, namely :-
" Money shall not be borrowed except for permanent works (including under this expression any works of which the cost ought, in the opinion of the Local Government Board, to lee spread over a term of years)."

Under this Act (Sec. 234 [4]) the period of repayment may be fixed by the local authority with the sanction of the Local Government Board.

Section 243 of the same Act dealing with loans to local authorities by the Public Works Loan Commissioners, provides:
"That in determining the time when a loan under this section shall he repayable the Local Govermment Board shall have regard to the probable duration and continuing utility of the works in respect of which the same is required."

With the widening of the sphere of muncipal activity to include gas works, tramways, electric supply, hydraulic power supply and other manufacturing (and in many cases profit earning) utilities, the problem became more complicated, seeing that the total loan authorised for any one undertaking necessarily included outlays of very diverse character having widely rarying periods of utility and consequently varying periods of repayment. Further difficulties were introduced, when, under the Public Health Acts Amendment Act, 1890, local authorities generally were empowered, subject to certain conditions laid down in the Stock Regulations of 1891, etc., to raise money by the issue of stock redecmable on a specified date or at the end of a given number of years.

During the earlier years, when each low was authorised for one class of outlay only with a definite repayment period, all that was necessary was to keep a separate sinking fund for each loan, when the whole amount was borrowed in one year, and to keep a separate fund for each year's borrowings, when the loan was borrowed orer a series of years. The same applied to loans authorised for one undertaking including various classes of outlay, each having a different period of repayment, so long as the sinking funds could be kept distinct for each class of outlay or each years borrowings, and the funds could mature at the end of the respective periods and the loans then be redecmed. But when it hecame possible to raise loans by the issue of stock redeemable on a fixed date it at the same time berame neressary to so arrange the sinking fund instalments that the total loan should be redeemed on the preseribed date imespective of the repayment periods imposed for the seremal component parts of the outlay.

The difficulty is overome ly ascertaining the equivalent arerage date of reparment of the whole oil the loan, and calculating the ammal instalment required to be set aside and accumblated in one instead of in seremal sinking funds. The actual practiee varies. In some cases the sanction states the sperifie amounts to be borrowed for each class of outlay with the period of repayment allowed for eath elases and the duty of fixing the arerage date falls upon the local authority. In
other cases the local authority submits a scheme to the Local Government Board showing the varions sums proposed to be borrowed for each class of outlay, the respective periods of repayment suggested and the proposed average date of repayment of the whole loan. This is subject to revision by the Government department concerned, especially as to the period desired by the local authority, and this being fixed the arerage or equated period is found by calculation in a manner which will be discussed in detail.

These are the geueral considerations which are involved in the equation of the period of repayment, but they may be further complicated by reason that the amounts are borrowed orer a series of years, or that the loans in respect of the component parts of the outlay are borrowed together at irregular times, and without any definite allocation as between the rarious classes of outlay. In many cases it is necessary to set aside temporary instalments during construction, leaving the final instalment to be ascertained by adjustment when the total loan has been borrowed and the whole of the works carried out and an apportiomment made of the outlay. In the case of very large undertakings this cannot be done until the engineer has given his final certificate.

Another difficulty arises in cases where the operation of the sinking fund is suspended for a number of years, and it is often almost impossible, owing to a combination of the above factors, to decide upon the amount of the first instalment to be set aside. The only permanent factor is the repayment of the whole of the loan on a fixed date. The same considerations apply on the consolidation of several existing loans repayable at various dates, when it becomes necessary to fix a miform date of repayment and adjust the instalment, haring regard to the amounts now in the several sinking funds.

Space will not permit of the detailed treatment of any such examples owing to the difficulty of stating a set of conditions which would be generally applicable. Each case must be dealt with on the individual facts, but any question likely to arise may be treated by one or more of the methods described in this book. As a general rule, where the conditions are at all complicated, it is better to set aside, during the construction period, temporary instalments of a gencral nature and defer any final adjustment until the whole of the loan has been borrowed and the actual outlay under each head has been certified by the engineer.

Tine Methons of Finding the Equated Period of Repaymant. The foregoing remarks will now be illustrated by the following example which is of a simple character without any of the complications previonsly referred to, and relates to a loan of $£ 56,000$, raised by the issue of stock redecmable at par in one sum on a rlate to be ascertained. The loan is required for an undertaking comprising outlay of a variable nature, each class of which has a different life or period of utility, and separate periods are preseribed for each. In order to ascertain the date of redemption of the stock it is required to find the equated period corresponding to the several prescribed periods and amounts. This method will apply to ordinary loans if it be required to repay the total debt on one date.

The rlases of outlay, the amounts of loan authorised in respect of each class and the prescribed periods of repayment are as follows: the rate of accumulation is $: 3$ per cent. per amum. The rate of interest payable upon the stock does not enter into the calculation.

TABLE XXXII. A.
Particulars of the Loan of $£ 56,000$.

The Arithametical Mefiod. Comder ordinary dircumstances the above amomes of loan woild be repayable at the end of the respective periods by means of the usual sinking fund instalments, as deseribed in previons chapters, but under the present conditions the whole of the loan is repayable on one date, which has to be so fixed that the lender will rereive his money at a time equivalent to that at which he would have received it if the original varying periods and amomests had been adthered to. In arithmetie this is known as " the erpation of payments," and the rule is stated as follows:-

I/ultiply each debt by the mumber of years which will chapse before it becomes peyable; add the results together: diride this sum b! the sum of the debts; the guotiont will be the number "f years in the requated time.

But it is stated in the books on arithmetic that this is only approximately correct, and can only be taken as equitable when the various times of repayment are not widely apart. The error, it is pointed out, is in farour of the payer as it extends the period of repayment. This arithmetical method will first be applied to ascertain the equated period of repayment of the above loan of $£ 56,000$, after which an investigation will be made in order to ascertain the true equated period suggested in the arithmetic book. This is the more neressary because in the case of the loans of local authorities the various times of repayment are very widely apart. The result of the investigaltion into the true equated perionl will show that it is shorter than under the arithmetical method. In the case of a local authority, howerer, the arithmetically equated period may be preferred because it is slightly in favour of the payer (in this case the revenue or rate account of the equated period) as it extends the reparment beyond the time required by the true equated method. The effect of equating several sinking fund periods is to reduce the total period over which the repayment is spread and thereby relieve part of the original period of any charge whatever. The burden of this relief is thrown upon the equated period taken as a whole, and any extension of this period teuds to redress the inequality caused by the equation. With regard to the interest upon the loan, which will be considered fully in Chapter XXXI, it should be remembered that under the original conditions the ammal interest charge to reventue or rate will gradually be redued as the loans with shorter prescribed periods are repaid; whereas under the generally adopted method of distributing the ammal burden after equation, interest upon the full amoment of the loan is payable equally during and charged equally against the revenne or rate accomit of each year of the erpuated period. This will be discussed in a later chapter, but the present subject of enquiry relates solely to the method of fimding the trine equaterd period.

The calculation of the equated period relating to the above loan of $£ 56,000$ will now be made, by the arithmetical rule, and, although the figures adopted give a period of an exart number of years, yet in practice this will rarely be obtained. It is in fact somewhat difficult to state original conditions which will work out to an even number of years in the equater period.

TABLE XXXII. B.
Tife Arithmetical Metiod of Finding the Equated Period of Rephimeat.
Required the equated period, at the end of which the total loan should be repayable, corresponding to the repayment of the component parts of the loan at the end of the respective periods prescribed for each.

Nature of outlay.			Product of amount of loan multiplied by number of years.
Class 1	$\pm 10,000$	45 years	$\pm 450,000$
,, B	20,000	*9 , ,	580,000
, (${ }^{\prime}$	24,000	15	360,000
, D	2,000	5 , ,	10,000
	$\pm 56,000$		$£ 1,400,000$

Equated period:-

$$
\frac{1,400,000}{56,000}=25 \text { years. }
$$

The Tree or Mathematical Method. The correctness of the above arithmetically equated period will now be investigated, as well as the effect of the alteration upon the repayment of the loans.

To do this it is first necensary to ascertain the exact equivalent of the original conditions. This will be stated as if those conditions had been carried out by setting aside an equal ammal instalment in respect of each of the amounts of loan and aceumulating them in four separate sinking funds to repay the several portions of the loan at the end of $5,15, ~ \mathfrak{~} 9$, and 45 years repecetively. But as the individual sinking funds mature at different dates each ammal instalment must be reduced to its present value. The sum of such present values represents the amount of money now required to purehase an equivalent ammity or ammal instalment for the equated period of 25 years. For purposes of the comparison to be made in Chapters XXXIV and XXXV it is necessaly to know the individual instalments to be set aside during the whole of the above periods, and the ammal instahment as well as its present value will therefore be shown in earh case. The ealeulations are all similar to oihers which have been previously worked out so that it is not necessary to show the actual working as in earlier chapters.

TABLE XXXII. U.

The eqcation of the period of rephyant of hoans, repayable at various dates, which are recquired to be redeemed on one uniform date.

Loan of $£ 56,000$, authorised for outlays of rarying character, each having a different life or period of continuing utility, and a consequent period of repayment.

Rate of accumulation, 3 per cent.
Annual instalments required under the original conditions.
Equated period for a loan for public works consisting of outlay having varying lives or periods of continuing utility.

Nature ofoutlay.	$\begin{aligned} & \text { Period } \\ & \text { allowed for } \\ & \text { repayment. } \end{aligned}$	Amount of loan authorised.		$\begin{gathered} \text { Annual } \\ \text { instalment } \\ \text { to repay loan. } \end{gathered}$	Present value of	
		Details	Total.		repayable at enll of period.	$\underset{\text { anstaluments. }}{\text { anual }}$
Class 1	45 years	-	10,000	$107 \cdot 85$	$2644: 39$	$2644: 39$
B	29 ,	-	20,000	$442 \cdot 29$	$8486 \cdot 93$	$8486 \cdot 9: 3$
,, U	15	-	2 4,000	129040	15404.69	1540469
,, D	5 ,	-	2,000	:376:1	1205 2 N	120502
Total	45 years	-	56,000	$2217 \cdot 25$	2626123	282610

The present values in the above table are the present values both of the amomots of loan repayable at the end of the respective periods and also of the corresponding simking fund instalments, since the instahments, if accumulated, will, at the end of the respective periods, amome to the respective loans.

The whole of the loans, although repayable at the end of suceessive periods, have now been reduced to a common measure, namely, a "prescnt value" of $\mathfrak{t}^{2} 2 \boldsymbol{2} 2612: 3$, which represents the amount for which the varions sinking fund obligations might be redecmed at the present time, and upon which the calculation of the true equated period will be based.

The following argument is summarised in Table NXXII. D., which may be referred to with advantage:

If the arithmetial calculation of the equated period of 95 years be correct this sum of $£ 28261 \times 23$ should in 25 years, at 3 per cent., amount to $£ 56,000$, and the ammity which it will purchase (or the sinking fund instalment) should also amount to $£ 56,000$ in that period. This, however, is not the case.

It may be found by calculation that $£ \mathscr{2} 261 \times 3$ will in 25 years，
 And it may also be ascertained that the annuity or annual instalment，which will amount to $£ 5912 \sim 55$ in ${ }^{2} 5$ years，at \because per cent．，and of which $£ 25261 \times 3$ is the present value，is $£ 16 こ 2 \cdot 98$ per annum．Since $£ ゚ \unrhd よ 261 \cdots 3$ is also the present value of the four annual instalments required to provide the com－ ponent parts of the loan of $£ 56,000$ at the end of the respective periods of $5,15,29$ and 45 years，it is obvious that the error lies in the number of years in the equated period，as found by the arithmetical method．

The next step is to calculate the actual annual instalment （and also the present value of the instalment）required to repay $\pm 56,000$ in 25 years，the equated period as found by the arithmetical method，but which there is reason to suspect is in excess of the true period．It will be found，on making the calculation，that the annual instalment to repay $\ddagger 56,000 \mathrm{in}$ 25 years is $\pm 1535 \cdot 95$ ，and its present value $£^{2} 2654.90$（which is also the present value of $£ 56,000$ due at the end of 25 years）． This annual instalment of $£ 153595$ cannot，of course，be compared with the four sinking fund instalments，amounting together to む゚ごこ1でこう，to be accumulated for the original periods because they are all for different numbers of years，but it has been ascertained that they are equivalent to an annual instal－ ment of $£ 16 \times 2.98$ to be set aside for 25 years，and aceumulated at $: 3$ per cent．It is therefore possible to compare the two annual instalmento of $£ 15: 5 \cdot 9$ and $£ 16 \geqslant 28$ ，and the result is to prove that the arithmetically equated period gives an anmual instalment which is less by $\mathfrak{f s} \cdot(0)$ than the exact equivalent of the original instalments．In other words，the aritlmetically equated period is too long．The following table（ IXXII．D．） shows the above conchusions：
＇TABLE XXXII．D．
The True or Mathematical Memod of Finding mif Equated Perion of Rephyment．

Showing the annual instahents and their present values under （1）the original conditions：
（2）the arithmetically equated period：
（3）the true or mathematically equated period．

Sinking funcl instalment and present value thereof for	$\text { A mount } \begin{gathered} \text { of loan. } \end{gathered}$	Number of. years	Sinking fums instament per anmum.	$\begin{aligned} & \text { Present } \\ & \text { value of } \\ & \text { loan or } \\ & \text { sinking fund } \\ & \text { instalnent. } \end{aligned}$
	10,000	45	$107 \cdot 85$	$2644: 39$
Original periods of	20,000	29	$442 \cdot 9$	8486.9:3
repayment	24,000	15	129040	$15404 \cdot 6!$
	2,000	5	376.71	1725 20
	56,000		2217.25	28261×3
25 years, the equated period as found by the arithmetical methol:-				
Amount of loan	$56000 \cdot 00$	25	15:3595	2674590
Amount which will be provided at end of 25 th year	59172.75	25	1622.98	282612?
Surplus	3122.75	25	$87 \cdot 03$	15153?
24 years:-				
23 years: -				
Amount of loan	56,000	23	172558	28.74.7.
Amount which will be provided at end of 23 rd year	55,5\%6	23	1718.68	28261×3
Deficiency ...	224	23	$6 \cdot 90$	11950

Having ascertained the exact error in the annual instalment under the arithmetical method of equation the error in the equated period itself may now he found. It has already been ascertained that at ? per cent. £26T $45 \cdot 90$ will amount to $£ 56,000$ in 25 years, and the problem is to ascertain in how many years $£ 28261 \cdot 23$ will amount to $£ 56,0100$. As the present value of the four original instalments, mamely, $£ 28261^{\circ} 2$, is greater than $£ 26745 \cdot 90$, which is the present value of $£ 56,000$, it will amount to $£ 56,000$ in a smaller number of years than 25 . The exact number of years may be ascertained by using the formula relating to Table I, in standard calculation form, No. 1, to find the amount of $£ 1$ in any number of years, but this will give a result consisting of a mumber and a fraction. In cases such
as the present the exact fraction of the year is required only for the purpose of fixing the nearest number of whole years, so that the problem will work out in practice. The method of finding the number of rears by using the formula relating to Table I is as follows, and may be compared with the standard calculation form for the purpose given in Chapter X.

STATEMENT XXXII. E.
 to $£ 56,000$ at $: 3$ per cent.

By formula and logs.
$A=P^{\mathrm{N}} \quad 56,000=28261 \cdot 29 \times 1 \cdot 03 \mathrm{~N}$.
Log. amount at end of period ... 56,000 4.7481880
deduct Log. present value...$\quad 28261 \cdot 23$ 4.4511911

$$
=\log \cdot \mathrm{R}^{\mathrm{N}} \quad \ldots \quad 0 \cdot 2969969
$$

divide by Log. $\mathrm{R}=1.03 \quad \ldots \quad 0.0128372$
To divide one Log. by another find
the Logs. of the abore Logs. as if
ther were actual numbers, viz.
Log. $2969969=6 \cdot 4 \pi 2 \pi 516$
Log. $128372=5 \cdot 108.350 \%$
$1 \cdot 364281.3$
which is the Log. of the number of years, viz. ...
In order to avoid the necessity of dividing one \log by another, the exact number of years may be ascertained by means of Thoman's Table giving the logs of R^{N}, at 3 per cent., for various yare, as follows:-

Proceed as in the above Statement by deducting the log of the present value of the ammal instalments under the original conditions, from the log of the amount of loan reparable at the end of the period. The remainder is the log of R^{N}. from which the value of N, may be obtained. In the above rave, the log of R^{N} is

02969969

On referring to Thomm's Table, the nearest logs of R^{N}, above and below this, are found to be as follows:-
at $: 3$ per cent., $\log \mathrm{R}^{\mathrm{N}} \ldots$... ... 24 years 03080934
$2: 3$ years 0.2952562
a difference of 0.0128372

The next step is to find the difference between the log. of R^{N}, as found in the above calculation in Statement XXXII. E., and from which it is required to find the value of N ; and the lower of the above logs in Thoman's 'Table as follows:-
\log of R^{N}, in calculation, as abose \ldots... ... $0 \cdot 2969969$
\log of $\mathrm{R}^{\mathrm{N}}, \mathfrak{2}: 3$ years, by Thoman $\ldots \mathrm{In}^{2} . .$.
a difference of $0.0012+07$
and the fraction of a year above 23 years is:-

$$
\frac{17407}{128372} \text { or } 0 \cdot 135598 \text { as may be found by logs. }
$$

The number of years therefore is $\mathfrak{D} \cdot 136$, and agrees with the calculation in Table XXXII. F., made by mealm of the fommla.

Another method of making the calculation, after having found the above difference of $0.0128: 32$ in the logs, is to refer to the tables of differences given in the margin of the ordinary \log tables, and under 12 s the following amounts will be found:

$$
\begin{aligned}
& \cdot 10=0 \cdot 12800 \\
& \cdot 0 \tau=0 \cdot 00900 \\
& \cdot 00 t=0 \cdot 00051 \\
& \frac{1 i \cdot t}{}=\overline{0 \cdot 1: 3551 \text { of } 1 \text { year, }}
\end{aligned}
$$

which differs from the previous result by less than 1 day.
Summary of the True or Matiematical Method. In order to ascertain the number of years in the true equated period it is advisable to find, first, the approximate number of years by the arithmetical method, in this case 25 years, and then to find by calculation in the manner abready described, and shown in Table XXXII. C., the present value of the several annual instalments under the original conditions before equation ; in the present instance, $£ 28261 \cdot 23$. The next step is
to find the amount of loan, $£ 59122 \cdot 75$, which will be provided by the accumulation, at the estimated rate, of the above present value, for a number of years (25) equal to the equated period, as ascertained by the arithmetical method. The amount of loan which will be thereby provided should then be compared with the actual amount of the loan. As a general rule the amount of loan which will be provided by the accumulation of the present value of the annual instalments under the original conditions before equation at the end of the equated period, will be greater than the amount of the loan, and will denote that the equated period as found by the arithmetical method is in excess of the true equated period.

The enquiry is therefore confined to the present value of the actual loan, at the estimated rate of accumulation, for periods of years less than the number of years (25) as found by the arithmetical method.

Reference is next made to the tahles of compound interest in order to ascertain the present value of the loan at the estimated rate of accumulation for periods less than the arithmetically equated period.

Reverting to the present example, a period of 24 years will first be taken, and it will be found he calculation on standard
 at the end of 24 years is $£ 27548 \cdot 29$, requiring an anmual instalment (as may be found by standard ealeulation form, No. 8 x) of £16マ6.65.

The above present value, $£ 27548 \cdot 29$, as compared with £2S261.2S, the actual present value of the origimal annual instalments, before equation, is still insufficient, and a period of 23 years is adopted. Similar calculations will show that the present value of $£ 56,000$ due at the end of 29 years, is £2S.744.73, which is very nearly correct. And therefore 29 years is adopted as the nearest to the true equated period. The future ammal instalment to he spread equally over the equated period may now he ascertained ber calculation on standard form $3 x$ and will he found to be $£ 122558$.

The only conelusion which may property he drawn from the ahowe facts, is, that an annual instalment of $£ 1725 \cdot 58$ to be accumulated for $2 ?$ years at $?$ per eent., is, within a small limit of error, the thue mathematieal equivalent of the four anmual instalments under the original conditions, amomeng together to £2, 1-25, as shown in Talbe XXXTI. ('., to be aecumulated for the respertive periods shown in that table. It has nothinge whatever to do with the incidenee of the burden upon the
revenue or rate accounts of the equated period，which will be fully considered in a later chapter．

The correct figures as to the equated period of repayment of the above loan are therefore as follows：－

Amount of loan repayable at the end of $\mathfrak{2}: 3$ years $£ 56,000$
Present value thereof ．．．．．．．．．．．．．．．．．．£2s：i54．
Annual instalment of which $£ 2 \begin{array}{ll}5 \\ \text { A } & 4 \cdot 7: 3 \\ \text { is the }\end{array}$ present value，aud which will amount to $£ 56,000$ in $2: 3$ years at ？per cont．．．．．．．$£ 120558$

Owing to the fact that the equated period is fixed at the nearest whole number of $2: 3$ years，instead of $2: 3136$ years，as shown in Statement XXXII．E．，the annual instalment of $£ 122558$ is larger than the instalment $£ 1518 \cdot 68$ ，which is the equivalent of the present value $£ 28261 \cdot 2: 3$ ，of the original instalments shown in Table XXXII．C．The following table shows the error involved by taking the nearest whole number of years：－

23 years 3 per cent． based upon ：－
Actual amount of loan
Actual present value of the original in－ stalments $\quad . . \quad \ldots \quad £ 55,756$ £28261•23 £1718．68

Difference

Capital	Present value．	$\begin{gathered} \text { Annual } \\ \text { instalment. } \end{gathered}$
£56，000		£172558
£55， 276	£2826193	$£ 1718.68$
£゚が	$\pm 11: 50$	$\mathfrak{E} 690$

The above table shows that $£ 28261 \times 2$ will not amount to $£ 56,000$ in $2: 3$ years but only to $£ 55,56$ ，requiring an annual instahment of $£ 1 i 1868$ ，consequently it is not posisible to arrive at anything nearer than an approximation of the period．The anmal instalment to be set aside for $2: 3$ years corresponding to the present value of $£ 2 S 261 \cdots ?$ ，namely $£ 1 / 1868$ ，is less by $£ 6: 30$ than the instalment required to repay $£ 56,000$ ，and would fall short of repaying the loan by $\mathfrak{E} \because 24$ at the end of $\mathfrak{2}: \%$ years． The method is an approximation only and in actual practice the arithmetical methon would give a number of cears contain－ ing a fraction，but the result is sufficiently correct if the nearest number of even years be taken．

The effert of adopting an equated period of 25 years，as shown ly the arithmetical methorl，instead of $2: 3$ years as shown
by the true equated method, may be seeu from an inspection of Table XXXII. D. It may be taken as a general rule that the arithmetical method gives the longer repayment period, and relieves the reveuue or rate accounts of the equated period as compared with the true method of equation which should always be used when it is desired to accelerate the repayment of the loan, or when extreme accuracy is required.

Further Proof. The previous example of the equation of the period of repayment of a loan of $£ 56,000$ is not a case occurring in actual practice. The amounts of outlay composing the loan as well as the periods of repayment are all assumed. and the problem has been treated purely from the theoretical standpoint in order to show the difference between the arithmetical and true methods of finding the equated period. The basis of the method there adopted is to ascertain, first, the annual instalments required in respect of each part of the loan and then to find the present value of such instalments. The same present values may be obtained in one operation by finding the present values of the several amounts of loan repayable at the ends of the respective periods, where it is not necessary to know the actual instalments, as was the case in the foregoing example.

A further example will now be given, using figures occurting in actual practice, but with a shorter period of ultimate reparment than 45 years, and the results will be compared with the previous example. The calculation will be made by the shortest possible methorl. The artual example may be found in the report by a Select Committee of the Llouse of Commons upon the Repayment of Loans ly Local Authorities (190?), page 261. This example of an equated period was put in evidence by the Assistant Secretary of the Local Gowmment Board to illustrate the method adopted by the Board in order to arrive at the average period to be granted for the repayment of a loan to be expended upon a gas undertaking where the component parts of the outlay have a variable probable duration and continuing utility.

The following table shows, in the first four colums, the nature of the outlay, the period allowed for reparment in respert of each, and the amount of loan to be expended in each rase. The fourth cohmm shows the component parts of the loan in respeet of which the same period is allowed. The details are taken from the appendix to the above report. In order to awod repetition the table also contains the present
values of the component parts of the loan as found by calculation．The annual instalments are not shown，because in this case they do not enter into the calculation．Thistable may be compared with Table XXXII．C＇．

TABLE XN゙NII．F．

The Equation of the Period of Repayment of Loms repayable at various dates，which are required to be redcemed on one uniform date．

Loan of $£ 9105$ ，authorised for outlays of varying rharactor， each having a different life，or period of continuing utility， and a consequent period of repayment．

Rate of accumulation， 3 per cent．

Ecpuated period for a loan for Gas－works purposes．

Nature of outlay．	Period allowed $\xrightarrow[\text { for }]{\substack{\text { for }}}$ repayment．	Amount of loan authorised．		Present value of		
				instalment to rejayloan． loan	repayable atend of periorl． end of perion	$\begin{gathered} \text { Future } \\ \text { annual } \\ \text { instalments. } \end{gathered}$
		Detaits．	Total．			
Building＊	30 years	2500.00				
Mains	，＂	1245．00		为		
Gasometer	＂	$1500 \cdot 00$		\bigcirc		
Condensers	＂	5：30．00				
	30 years		555500	为	239929	2：39022
Purifiers	20 years		$1000 \cdot 00$		55\％ 67	$553 \cdot 67$
Benches			$1200 \cdot 00$	粏	750：2	700：
Meters			$530 \cdot 00$		$39+37$	3943
Retorts			$600 \cdot 00$		$565 \% 5$	565.55
	30 rears		$9105 \cdot 00$		466304	4663.04

The report shows also the arithmetieal method adopted to arrive at the equated period of repayment of the total loan authorised，and this method corresponds exactly with the method laid down in the books on arithmetic and illustrated by Table XXXII．B．The actual working is given in the report and may be summarised as follows：－

TABLE XXXII. G.

The Aritinetical Metiod of Finding tife Equited Period of Repayment of the Loas.

Sature of outlay.		$\begin{gathered} \text { Amount } \\ \text { of loan } \\ \text { authorised. } \end{gathered}$	$\begin{aligned} & \text { Prescribed } \\ & \text { pieriods. } \end{aligned}$	Product of amount of loan multiplied number number of years.
Buildings, etc.	\ldots	5,5i5	30 years	173,250
Purifiers...	...	1,000	20 ,	$\because 2,000$
Benches	\ldots	1,200	15 ,	18,000
Meters		5:30	10 ,	5,300
Retorts	\ldots	600	\because,	1,200
		9,105		215,750

Equated period:-

$$
\frac{217750}{9105}=23955, \text { or } 24 \text { years. }
$$

The Trefe or Mathenitical Method of Fininivg the Eqcited Period of Rephyent. As already stated, the method about to be deseribed differs shighty from that adopted in the previous example, and is shorter. The first step is to find by calculation on standard calculation form, No. 2 . the present values of the eomponent parts of the loan for the respective periods allowed. These present values are shown in the sixth column in Table XXXII. F., and amount toqether to $\mathfrak{£}+660 \% 04$. The next step is to find the number of rears in which $£ 446 \% 04$ will amoment to the loan of $£ 9,105$, at $: 3$ per cent., in order to replace a gradual reparment of the compment parts of the loan hy simultaneous reparment of the whole. In the previous example, three methods are deseribed of finding the number of rears, one being by direct calculation by means of the formula relating to the amonnt of $£ 1$ per ammm in standard ralculation form, No. B, which is illustrated hy Statement XXXII. E. The second method of fimling the number of years is be means of Thoman's tables, and is fully described in the previous pample. The third mothod is hy trial and error, hased upon the approximate momber of years in the equated period found be the arithmetical method. and this method will be applied to the present instance. I singe standard malculation form No. 1, it may be fomd that $\pm 160 \% \% 0 t$. ademmulated at : per rent., will amount to: -

| in 24 years \ldots | $£ 9 \pm 49 \cdot 00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| in $2: 3$ years \ldots | $£ 9202 \cdot 90$ |
| in 22 years \ldots | $£ 8934 \cdot 87$ |

as compared with the equated period as found by the arithmetical method:-
in 24 years...

It is obvious that the true period is nearer to $2: 3$ years than to $\underset{\sim}{2}$ years. If it be calculated exactly by either of the methods used in the previous example it will be found to he $2 \cdot 638$ years; and therefore $2: 3$ years should be adopted in practice instead of ' $2 t$ years as found by the arithmetical method abose described. The actual difference between the periods found by the two methods is $1 \cdot 2 \pi$ years. In the previous example the actual difference was 1.864 years, but in that case the longer repayment period was assumed to be 45 years, whereas in the present instance it is 30 years only. There is not any common ratio existing between the original and the equated periods, or between the two equated periods as found by the arithmetical and true methods. The number of year's in the equated period depends upon the interaction of the component parts of the loan and the respective periods prescribed for their reparment.

Having found the true equated period in the above manner the enquiry strictly comes to an eud, but if the ammal instalment is required to be spread equally over the period it may be found in the usual manner on standard calculation form No. Bx. So far as the lender is concerned this is quite equitable, but having regard to the varying life of the assets created out of the loan the question of the amual charges to revemue or rate during the period becomes important and will be fully considered in the following chapters.

Section VIII.
The Equation of the Incidence of Taxation.

CILAP'LER XXXII.

THE EQUATIUN UF THE INCIDENCE OF TAXATION.

COMPIRISON OF THE TOTAL ANNUAL JOAN CHARGES TO RENENUE OR RATE, BFFORE AND AFTER TLIF EQUATLON OF TLE PERIOD OF REPAYMENT, SHOWIX゙G THE UNEQUAL INC1DENCE OF TAXATION IF THE ANNUAL LNSTALMENT AND INTEREST UBON TILE TOTAL LOAN RE SPREAD EQU゙ALLY OVER THE EQUATED PERIOD.

The subject of enpuiry in the previous rhapter is the cormect method of finding the equated date of reparment of several loans repayable at varying dates, and the result of such enguiry is to show that the generally adopted arithmetical method is wrong in principle secing that it tends to prolong the period. Having found the equated date the next step is to ascertain the annual instalments to be charged to revenue or rate accoment during the equated period in substitution for the ammal instalments required under the original comditions before equation. The present practice is to regard the matter purely from the point of view of the loan holder and to set aside an equal annual instatment to be spread over the whole of the equated period without any regard to the incidence of taxation or the life of the asset created out of the loan. Seeing, however, that the ammal instalments are arcommatat in the sinking fund and are not repaid to the lender motil the end of the period it is immaterial to him how the annual instalments are distributed over the revenue or rate accomits of the equated period. On the contrary it is a matter of concern to the ratepayer that the annual contributions out of revenue or rate are borne equitably by successive years, and this question will now be considered. The permanent character of the serurity for local loans is shown by the preferential nature of the redemption of part of the loan out of the sinking fund before maturity. In the case of financial and commerrial modertakings any such redemptions are made pro rata or by some method in which each loanholder has an equal chance.

The effect of the generally adopted method of equation of the period of repayment is to reduce the amual instalment
during the earlier years of the equated repayment period and thus relieve the revenue or rate account of those years. This may at first sight appear strauge, when it is borne in mind that under an equation of the period the total loan is repaid at an earlier date although the mathematical result may be exactly equal.

This will be found to be the case on referring to Table SXXII. D. in Chapter XXXII, giving the munal instalments required to repay a loan of $£ 56,000$ in an equated period of 23 years in substitution for periods of $5,15,29$ and 45 years.

The following table (XXXIII. A.) shows the annual instalments to be set aside, dividing the original periods into five, at the end of four of which, part of the loan would have been repaid, whereas the total loan is repayable at the end of the DBrd year under the equated method:-

TABLE XXXIII. A.
Loan of $£ 56,000$ (authorised for outlays of varying nature having prescribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Comparison of the annual charges to revenue or rate in respect of the annual instalments under (1) the original conditions, and (\mathcal{Z}) after equation where such annual instalments are spread equally over the equated period.

Periods of equal incidence.	(1) Original periods.		(2) Equated period.		Equated period as compared with original periods.	
	No. of years.	Sinking fund instalments.	No. of years.	Nimking fund instalments.	Increase.	1)ecrease.
5) years	5	$2217 \cdot 95$	5	1795:58	-	491.67
10 years	10	$1840 \cdot 54$	10	17.25 .58	-	114.96
\& years	S	$550 \cdot 14$	S	129558	117544	-
6 years	6	$550 \cdot 14$	-	-	-	$550 \cdot 14$
16 years	16	$107 \cdot 85$	-	-	-	107•85
	-		-			
	45		23			
	-		-			

The above table shows that during the first five years of the equated period the annual instalment is reduced by $£ 491 \cdot 67$, and that during the second period of 10 years there is a similar
aunual reduction of $£ 114 y 6$. The heaviest charge falls upon the third and tinal period of eight years, which is part of ant original period of 14 years. During thls period the anmual instalment is greater by $£ 11 / 544$ than the corresponding annual instalment under the original conditions before equation. This large increase in the aunual instalment is due to the fact that under the original conditions, before equation, $\mathscr{E} 26,000$ of loan would have been repaid by the end of the 15 th year, being the end of the second portion both of the equated and original periods. This amount of loan, having a short period of repayment, naturally required a larger amual instalment than the remaining loans having longer periods of repayment. After the final repayment of the loan, at the eud of the equated period of 23 years, by means of the equal annual equated instalment of 5120558 , the revenue or rate account is relieved of all contributions both in respect of the annual instalment and interest upon the loan.

As already pointed out, the actual figures in individual cases will vary in accordance with the amounts of the respective loans and the length of the various periods allowed for repayment, but the generality of equations will follow the main features here outlined. The results of an equation of the period of repayment may be summarised as follows:-As regards the annual sinking fund instalment to be charged to revenue or rate account, the earlier and later years of the original repayment period will be relieved and the resulting burden thrown upon the middle portion of the original repayment period, which is the final part of the amended equated period. This relief will of course apply in full to that part of the original repayment period beyond the equated period, seeing that the whole of the loan will then have been repaid.

The following table, XXXIII. B., shows the result of the equation of the period of repayment, as regards the interest upon the loan, chargeable against the revenue or rate account of each year of the equated period as compared with the corresponding annual interest charges under the original conditions, before equation. Under the original conditions the loan would have been gradually repaid, thereby reducing the annual interest charges against the revenue or rate accounts of subsequent years, but after the equation of the period of repayment, the revenue or rate account of each year of the equated period is charged with interest upon the total amount of the loan. The equation of the amual charge for interest upon the loan will be fully cousidered in Chapter XXXV.

TABLE XXXIII. 3.
Loan of $£ 56,000$ (authorised for outlays of varying nature having prescribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Comparison of the ammal charges to revenue or rate in respect of interest upon the loan under (l) the original conditions, and (己) after equation.

leriods of equal incidence.	(1) Original periods.		(2) Equated period.		Equated period as compared with original periods.	
	Loan,	Interest.	Loan.	Interest.	lucrease.	Decrease.
j) years	56000	1960	56000	1960	-	-
10) years	54000	1890	560000	1960	70	-
8 years	30000	10.50	560000	1960	910	-
6 rears	$: 30000$	1050		-	-	1050
16 years	10000	$: 50$	-	-	\cdots	350

45 years

The foregoing tables show that mader the generally adoped equated method the relief during the first period of 5 years is solely in respect of the anmal sinking fund instahment and that the ammal interest charges are maltered owing to the fact that no part of the loan is repayable, under the original comditions, until the end of the fifth year. During the second period of 10 years there is a decrease in the ammal instalment, but there is an increase in the amoment of the ammal interest charges, because the repayment of $£^{2} 0000$ of loan whieli, under the original comditions, would have been made at the end of the fifth year, has by the equation of the period of repayment been defersed until the end of the 2 :hrd year. The third period of 8 years, being the final portion of the equated period, has to bear an increased ammal eharge of $f^{2} 085 \cdot 14$, being an increase in the ammal instalment of $£ 1155+t$ in addition to an increased ammal interest charge of $£ 910$.

The explanation of the large inerease in the total ammal hurden imposed upon this period is, that it has to bear, not only the relief to the earlier periods of 5 and 10 years, but also the total selief to that part of the orgimal repayment period which is beyond the equated period. The whole of the foregoing conclusions are shown in the following table:-

TABLE XXXIII. C .
Loan of $£ 56,000$ (authorised for outlays of varying nature, having prescribed periods of repayment) the whole to be redeemed in one sum at the end of an equated period.

Showing the variation in the total annual charges to revenue or rate in respect of the sinking fund instalment and interest upon the loan, under (1) the original conditions and (2) after equation, where such ammal instalments are spread equally orer such equated periods.

A Summary of Tables A and 13 above.

These results are so remarkable that some enquiry may profitably be made into the matter, not only as to the necessity to make the equation, but also as to the effect of the equation upon the incidence of taxation. The neressity to make an equation of the period may arise in several wars. The mest important is in order to provide for the repayment of a lom raised by the issue of stock redeemable on a fixed date where the loan is authorised for works having varying lives or periods of utility. In the case of a loan to provide for outlay of one character only, or for different chasses of outlay having the same life or duration of utility, there is not any neressity to make an equation, the calculation being a simple one. The governing factor is the unequal life or duration of utility of the work authorised, upon which are based the periods allowed for the repayment of the component parts of the loan.

A further need for the equation of the period of reparment arises on the consolidation of several loans repayable at rarious dates. This may be part of a large financial scheme undertaken
with the object of generally simplifying the finances of a local authority or on the issue of stock to replace a number of small loans borrowed for short perionds. The issue of such a stock avoids the neressity of reborrowing a large number of small sums continually falling due, and gives a permanency to the outstanding debt. It also considerably simplifies the sinking fund book-keeping and renders much easier not only the investment of the sinking fund but also the redemption of part of the loan during the operation of the fund. Further, investors prefer a stock of large amonnt which is puoted in the Stock Exchange list and is readily saleable. Looking at the matter from the investor's point of view, it is a coincidence perhaps that the efriated period generally found necessary is about $20-30$ years, which is as long as investors generally approve. Both the shorter and longer reparment periods allowed for the repayment of local dolit are not suitable for permanent investment as a stock, and local authorities are thus obliged to rely upon the small investor who causes much more administrative work than the holders of a stock. The renewal or reborrowing of small loans falls upon the officials of the local authority, whereas the burden of any change in the ownership of a registered stock is bome by the holder except the registration of the transfor and the preparation of the new certificate.

The investor may therefore be eliminated from the enquiry because if he is willing to accept payment on the equated date the arithmetical or mathematical methods of aseertaining that date both give a sufficiently near approximation. The investor, except in a very academic way, is not concerned with the annual charges for redemption of the loan. The effect of the equation of the period upon the incidence of taxation therefore heromes the principal subject of enquiry, and the above table (XXXIII. C.) shows that there is a very wide difference as between the origimal and the equated periods in regard to the burden imposed upon successive vears or periods of years. It is here advisable to recapitulate the principles governing the method of fixing the original periods of repayment. The predominant factor in fixing the proper reparment periods to be allowed in respect of each individual elase of outlay is found in the prineiple laid down in the Statutes and adopted in the practien of Parliament and the Govermment departments, namely, that all loans shall be repaid during the period of utility or duration of the works in respeet of which the loan was borrowed. But a local authority has not any capital and can only repay the loan by annual contributions out of rate or out
of the profits of its revenue earning undertakings. It may be contended that revenue earning undertakings should be treated in a different manner to purely spending departments, such as a sanitary, highway or education authority, where the annual expenditure, both for current expenses and debt redemption charges, is taken direct from the pockets of the community ly way of a rate. Here it is important to adjust the incidence of taxation very accurately-and this is the object of the careful scrutiny by Parliament and the Government departments of the periods of repayment allowed. The effect of this scrutiny is seen in the original repayment periods allowed which are generally fixed at a number of years well within the life of the works for which the loan is authorised. If these periods are properly allowerl and the sinking fund instalments are based upon them there is an equitable incidence of the ammal burden, and the annual instalments may then properly be considered as the equivalent of an annual charge for depreciation--thereby carrying out the principle laid down in an cartier chapter of making each ratepayer contribute annually his due proportion of the cost of the benefits he receives each year, whether that cost be paid for during the year or be spread over a series of years.

But the equation of the period of reparment is purely a financial operation, and relates solely to the date of repayment of the loan without any regard to the effect of such equation upon the annual charges to the community by way of rate. The case is different with a commercial or financial undertaking where the reparments of debt are made out of the general assets of the concern and are not charged against the profit and loss account except and in so far as the operations of each individual year canse a loss of capital due to wear and tear of the asset. The reparment of debt and the annual charge to revenue are in the case of such undertakings kept severcly separate and distinct. In the case of a local authority the conditions are the exact opposite. In the first place, there is a careful and searching enquiry by Parliament and the Government departments, with the object of fixing the annual amounts to be charged to the revenue or rate accounts of successive years in respect of the repayment of the debt and the consequent charges for interest. These total charges are in many cases regularly met out of revenuc or rate during a part of the period so allowed, and it may then become necessary or advisable to make an alteration in the date at which the loan shall be repaid, and an equation of the period of repayment is made
resulting in such a drastie rearrangement of the total annual charges that the original careful calculations as to the life of the asset are ignored and rendered valueless. Reverting to the present example, it will be seen from Table XXXIII. C. that, although, in conseguence of the equation of the period, the fimal repayment of the loan is expedited, there is actually a decrease in the annul hurden for the next 15 rears and an absolute relief from any burden whatever during the later cears of the original period which were, under the conditions existing at the time the loan was authorised, charged with their due proportion. And the whole of the added burden is imposed upon the final years of the newly ascertained or equated period at a time when probably the undertaking may have to incur outlay on renewals.

If it at any time becomes neressary or adrisable to expedite the repayment of the loans the calculation of the ecpated period, and the resulting amended anmal instalment should be made in such a manner as to impose a proportionate part of the additional burlen upon each year of the equated period of reparment, instead of, as is the present practice, relieving both the earlier and the later years of the original repayment period at the expense of the midalle portion of that period which is alsn the final portion of the equated period. A method of doing this as regards the annual instalment will be deseribed in Chapter XXXIV, and as regards the interest upon the loan in Chapter XXXY. Fp to this point the general question of the reparment of debt has been treated from an actuarial or mathematical standpoint only, but the distubing element now introduced by the necessity to accelerate the final reparment of the loan and to vary the dates of repayment, by substituting therefor a common thate for the repayment of the whole of the loan, depends upon circumstances which are generally of a variable and somewhat accidental nature. It is therefore necessary to find an equitable practical method of restoring the origimal status, namely, to charge the revenue or rate account of each year with its due proportion of the ammal burden of redemption and interest rhages. It this stage it becomes advisable to differentiate between the ammal eharges in reepeet of the rememption of debt and the interest parable upon the lome becanse where loans are repaid by means of a sinking fund, interest is parable upon the total amome of the lean during the whole of the retemption period of whateres duration, and ceases motirely at the end of that period. Sny reduction therefore in the period of redemption will eorrespondingly
reduce the period during which there is any charge whatever in respect of interest upon the loan, and it will, in the first instance, be assumed that it is perfectly equitable to ignore the relief of later years in respect of interest upon the loan due to an increased sinking fund burden imposed upon the earticr years in consequence of the accelerated final extinction of the debt. Confining the enquiry therefore solely to the sinking fund instalment, annually charged to the revenue or rate account, it is necessary to revert to the primary factor in the redemption of debt, namely, the life or duration of continuing utility of the asset created out of the loan. A broad line is here reguired to be drawn between the two objects of the annual instalment, namely, the repayment of the deht and the charge to revenue or rate of the cost of the asset during its life or period of utility.

Under the original conditions before equation the total debt would have been gradually repaid at the end of a series of periods up to the 45 th year, whereas under the amended conditions the total loan will be repaid in one sum at the end of the 2 ard year or approximately in about one half the number of years. The magnitude of the annual instalment to be set aside and charged to revenue or rate in order to redeem a given loan depends primarily upon the period allowed for its redemption, which is based upon the life of the asset: and therefore if the total period be reduced, the periods allowed for the repayment of the component parts of the loan should be correspondingly reducerl.

CHAPTER XXXIV.

THE EQUATION OF THE INCIDENCE UF TAXATION (Continued.)

THE ANNULI INSTALMENT.

'THE VARIOUS METIODS OF ADJUSTING TIIE ANNUAL CHARGES TO REVENUE OR RATE DURLNG TIIE EQUATED PERIOD IN PROPORTION TO TIIE LIFE OL DURATION OF CONTINUING UTILITY OF TIIE ASSET CREATED OUT OF TIEF LOAN, VIZ:-BY CHARGLNG TIIE REVENLE OR RITE ACCOUNT OF EACH YEAR OF THE EQUATED PERIOD WITU TIIE ANXUAL INSTALMENT CHARGEABLE AGAINST EACII YEAR, BEFORE EQUATION. ANDD IN ADDITION THERETO A SUPPLEMENTARY ANXCAL INSTALMENT:-
(a) TO BE SPREAD EQUALLY OVER TIIE EQUATED PERIOD, OR
(b) TO BE PROPORTIONATE, YEAR BY YEAR, TO THE ANNUAL INSTALMENTS BEFORE EQUATION.

The previous argument will now be applied to the example under review, namely, the repayment of a loan of $£ 56,000$, authorised for large public works, the component parts of which have varying periods of continuing utility and consequent prescribed periods of repayment. Thder the original conditions the repayment of the loan was spread over a period of 45 years, but moder the altered conditions it is required that the whole of the loan shall be repaid at the end of an equated period of 23 years. Th this chapter the correct mothod of spreading the actual hurden equitably over the equated period is the sulaject of enguiry abd not the method of finding the true equated period which has heen fully disernsed in Chapter XXXIT.

The olject is to distribute the annmal simking fond burden equitally ower the reduend period of repayment instead of imposing an undue burden upon the final yeare of the equated period which is the offect of the method generally adopted, as shown in Table X X XIIT. C.

For this pmpose it will be an adrantage to talmatate the original comditions in the example comsidered in Chapter

XXXII, and to show also the proportionate amended periods of repayment under the amended conditions due to the equation of, or alteration in, the final period of repayment, as follows:-

TABLE XXXIV.A.
Loan of $£ 56,000$ (authorised for outlays of varying nature, having prescribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Comparison of the annual charges to revenue or rate in respect of the annual instalments under (1) the original conditions, and (\mathcal{Z}) after equation if such instalments are increased in proportion to the reduction in the reparment period.

Rate of accumulation, 3 per cent.

Class of outlay	N umber of years allowed for repayment of loan.			Annual sinking fund instalments. 3 per cent	
	$\begin{gathered} \text { Amount } \\ \text { of loan } \\ \text { authorised. } \end{gathered}$	Original conditions.	Equated 43 years.	$\begin{aligned} & \text { 45 year } \\ & \text { perioriod. } \end{aligned}$	$\begin{aligned} & 23 \text { years } \\ & \text { equated } \\ & \text { period. } \end{aligned}$
A	10,000	45	23	$107 \cdot 85$	$308 \cdot 14$
B	20,000	29	14	$442 \cdot 99$	$1170 \cdot 53$
C	24,000	15	8	$1290 \cdot 40$	2698.95
D	2,000	5	3	376.71	$647 \cdot 06$
	56,000			$2217 \cdot 25$	4824.68

The above annual instalments under the $\underset{2}{2}$ year equated period will repay the component parts of the loan at the end of the respective reduced periods of reparment, and are not in any way equated instalments. They are placed here only to show the effect of reducing the period from 45 to 23 years. They illustrate forcibly the wide difference between the financial obligation to repay the loan and the anticipated life of the various classes of outlay. Both these factors are distinct, but the generally adopted method of fixing the future amnual instalment after ascertaining the equated period does not make any such distinction but treats them as being equivalent.

It may be at once stated that it is not possible to adjust the unequal burden of the annual instalment as ascertained by the generally adopted method, by reducing each of the periods allowed for the component parts of the outlay in proportion to the reduction in the final period of reparment as shown in the above table. There are so many distubing factors and the conditions are so widely altered by reducing the periods by
one half that the results obtained show wider differences than exist under the method now in use. The author has worked out the problem in detail, but the results are too long to give in full and would not be of any practical value.

It is therefore necessary to adopt another line of enquiry in order to find a method of determining the annual instalment or instahments to be charged to revenue or rate to repay the total loan in one sum at the end of the equated period. So far as the investor is concerned the equated period of repayment already found is comparatively correct, but a more important matter is the equated ammal incidence of the burden upon each year's revemue or rate account. So long as the period of reparment and the life of the asset are the same the two methods rield identical results, but any alteration in the term of reparment makes an important difference in the annual charges to revenue or rate in successive rears. By the method now generally adopted and previously described the annual instalment is spread over the whole of the equated period of reparment, and this is considered to be an equitable substitute for a gradually decreasing charge which has been ascertained after careful enquiry as to the life of the asset.

Yery little consideration will show that this is rery far from being correct: and the result of the previous enquiry is to show that although the effect of the equation is to reduce the period of repayment aud correspondingly increase the total charge for redemption, yet there is actually a reduction in such antual charge during the earlier years of the equated period and an absolute relief from any charge whatever during that part of the original period beyond the equated period. These reductions in the charges against the carlier and later years of the original period incolve a severe additional annual burden upon the later years of the equated period. Although this inequality is not fully appreciated yet its effect has been mentioned in several places in the reports of the parliamentary committees which have enquired into the finances of local authorities where it is pointed out that under an equated method, loans for outlaps for which short terms are generally allowed are not repaid until the end of the lomer equated period, and consequently further bomowing powers ought not to be granted when the asset is exhausterl.

The result of the previous discussion of the subjeet is to emphasise the fact that as regards the ammal charge to revenue or rate the most important factor is the life of the asset, and it may naturally le romelnded that if anc change is made in the
final period of repayment the amended annual instalment to be charged to revenue or rate account should continue to bear as near as possible an approximate ratio to the original charge, instead of, as is the present practice, spreading the burden equally over the equated period without any regard to the life of the asset.

A method of doing this will now be fully described, taking as an example the loan of $£ 56,000$ already used to illustrate the previous remarks in Chapter XXXII upon the method of finding the true equated period. In comparing the two methods it is important to bear in mind that where the periods are not equated the sereral sinking funds will mature at successive dates, at each of which portions of the original loan will be repaid out of such funds, whereas under the equated method the whole loan is repayable on one date. Further, the equated period covers the date of final repayment of one or more of the component parts of the original loan. In the present chapter the sinking fund instahment only will be considered, leaving out of account for the moment the interest payable upon the loan which, as already pointed out, ceases entirely at an earlier date under the equated method, although the later years of the equated period bear a larger interest charge than they do under the original conditions. This is shown by Table XXXIII. B.

The following method of adjusting the annual charge to revenue or rate after an equation of the period is based upon the relative periods allowed for the repayment of the component parts of the loan, as expressed by the sinking fund instalments originally found requisite to repay the several portions of the loan at the end of the respective periods prescribed. In order to make the adjustment it is first requisite to ascertain the amount which would have been in the fund if the original instalments had been allowed to accumulate until the end of the equated period of 23 years instead of repaying $£ 2,000$ at the end of the 5 th year and a further $£ 24,000$ at the end of the 15th year. The original annual instahments are as follows:-
and the following table shows the amount which would be in the fund at the end of the $2: y$ year under the above conditions.

STATEMENT XXXIV.B.

Loan of $£ 56,000$ (as above).
Showing the anomit which will he in the sinking fund at the end of the equated period of $2: 3$ years if the original annual instalments as shown in Table XXXIII. A., are set aside for the periods origiually preseribed and no part of the fund is applied in repaying the loan.

Interest at 3 per cent.
 years 11722
Amount thereof at the cud of a further 18 years $\because 0040$
2. Amomit of $£ 18 \pm 0 \cdot 5 \pm$ per ammum for 10 years 21100
Amount thereof at the end of a further 8 years

26228
3. Amount of $5550 \cdot 1 \pm$ per amm for 8 years 4892

Total amount in the fund at end of 231 year 51660
being: -
Loan repayable at end of 5 th year
accretions for 18 years \ldots

The above amoment of | 5 |
| :--- | , 660 which would have been in the fund if the original ammal instalments had been added thereto and allowed to acommate for $2: 3$ yoars, represents that portion

 of the ammal rhareses to the revemme or rate aceomes of the d:; years. These ammal instahments are hased upon the respective mparment periode proper to be allowed for the component parts of the ontlay and may be acepted as fair and
 of the eguated period allowed for the repayment of the loan.

The balance of loan thas unprovided for is arrived at as follows:-

Total amount of loan £56000
Amount which will be provided by the accumulation of the original annual instalments for

Amount which will be unprovided for £4840

This amount represents the defieiency stated in terms of the loan, by which the accumulated amount of the original annual instalments, based upon the life of the asset, will be insufficient to repay the loan at the end of the amended or equated period, and this amount has to be provided by a supplementary instalment or instalments to be set aside in some way during the equated period of $2: 3$ years. To be perfectly accurate, the annual instalments should bear the same ratio one to another as the original annual instalments, and this should be done where the amounts of loan in question are large, seeing that the greater portion of the original burden should be borne by the earlier years. This will be referred to again in a later part of this chapter where the proper mathematical method of making the adjustment will be fully described. For the present it will be assumed that it is equitable to distribute the supplementary annual instalment equally over the equated period of 23 years, and the problem therefore is to find the annual sinking fund instalment to repay a loan of $£ 4340$ in $2 \cdot 3$ years at 3 per cent. This supplementary instalment, as may be found by standard calculation form $3 x$, is $£ 183 \cdot 3$ per aunum, and the ultimate annual instalments to be added to the fund during the successive portions of the 23 years are obtained by increasing each of the original annual instalments, prior to equation, by this amount, as shown in the following table:-

TABLE XXXIV. C.
Loan of $\pm 56,000$ (aththorised for outlays of varying nature, having prescribed periorls of repayment), the whole to be redeemed in one sum at the end of an equated period.
Comparison of the anmal charges to revenue or rate in respect of the annual instalments moder (1) the equated method generally adopted, and ($\mathfrak{\sim}$) in which the annual instalments as originally ascertained are supplemented by an equal additional instalment spread over the equated period.

1'eriods of equal incidence.	$\begin{gathered} \text { Original } \\ \text { amnual } \\ \text { instalments. } \end{gathered}$	Adhitional annual instalment	$\begin{gathered} \text { Total } \\ \text { annual } \\ \text { instaiments. } \end{gathered}$	Annual instalment as equaterl.
亏b years	$2 \cdot 21-25$	$13: 30$	$2: 50.98$	1725.55
10 years	$1840 \cdot 54$	$13: 3$	1974.2\%	12:558
' y years	$550 \cdot 14$	13:37:	$683 \cdot 87$	1725.58
-				
2:3 years				

By the aid of the above figures a comparison will how be made between the ammal instalments obtained by the theree methods, namely:-
(1) lnstalments payable during the original prescribed periods, providing for the gradual repayment of the loan at the end of $5,15,: 29$, and 45 years, and which are based upon the life of the asset.
$(\underset{\sim}{2})$ Instalments payable during the equated period only, based upon an equal annal darge to the revenue or rate arcount of each ycar, according to the method generally adopted. In this case the life of the asset is not taken into account in fixing the ammal burden. It is true that the periods originally preseribed enter into the arithmetical calculation of the equated periond, but the effect of this is lost by spreading the instatment equally wer the whole of the equated period so ascertained.
(3) Instalments payable during the equated period only, but which are not equal throughout the perion lout are based upon the life of the asset and are approximately proportionate to the instalments before equation.
In the following table the instalments (2) and (3) are compared with (l) those found requisite under the original conditions, and the interase or deccease in the ammal charge is shown in respert of cath period of equal incidence. It will be moticed that the final s years of the equated perion alone bear any increased charge.

TABLE XXXIV. D.
Loan of $£ 56,000$ (authorised for outlays of varying nature, having prescribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Comparison of the ammal charges to revenue or rate in respect of the annual instalments:-

1. Based upon the original repayment periods.
2. The equated method generally adopted.
3. The annual instalments, as in Table NXXIV. C.

The following increased or decreased annual charges are compared with the amounts in Column 1.

Periods of equal incidence.	Original periods. Annual instalment.	Equated methor usually adopted.		Equated methorl previously rescribed.	
		$\begin{gathered} \text { Aunual } \\ \text { instalment. } \end{gathered}$	Increaset becrease -	Annual instalment.	Increase + Decrease-
5 years	$2217 \cdot 25$	1725.58	$-491 \cdot 67$	$2: 50098$	$+133.73$
10 years	$1840 \cdot 54$	172558	- 114.96	1974 4	$+133.73$
8 years	$5.50 \cdot 14$	$17 \sim 558$	$+115544$	68:37	+133.3
6 years	$550 \cdot 14$	-	$-550 \cdot 14$	-	-550 $0 \cdot 14$
16 years	$107 \cdot 85$	-	$-105 \cdot 85$	-	$-107 \cdot 85$
-					
45 years					

The above table shows that the method just described, although it concerus the amual instalment only, remores the gross inequality which exists in the method generally adopted, in which each year of the third period of 8 years is charged with $£ 11554$ per anmm more than is the case under the original conditions before equation, based upon the life of the asset. In the method above described, not only is there a decreasing annual charge due to the fact that the classes of outlay with shorter periods of utility are written off in the earlier years but the total relief to the final $\stackrel{2}{2}$ years of the original period (or the post equated period) is charged against the whole of the equated period. This is almost as near an equalisation of the original ammal burden as can be made, and removes the objection that under the generally adopted method of equation the redemption of loans anthorised for outlay in respect of which only short periods are granted is unduly delayed. With regard to the annual charges in respect of interest upon the loan, there is not any variation from the conditions previously shown under the generally adopted
method of equation, and Table XXXIII. B., showing the comparison will still apply.

At this point it is interesting to compare the total annual charges for sinking tund instalment and interest upon the loan by means of the following table which may usefully be compared with Table XXXIII. C.:-

TABLE XXXIV.E.
Loan of $£ 56,000$ (authorised for outlays of varying nature having prescribed periods of repayment), the whole to be redeemed in one sum at the eud of an equated period.
Showing the rariations in the total annual charges to revenue or rate under the method described in Table XXXIV. U., as compared with the original annual instalments before equation.
This table should be compared with Table XXXIII. C.

Periods of equalincidence.	Sinking fund instalment.		$\begin{gathered} \text { 1nterest on } \\ \text { loan. } \end{gathered}$		Total charge to revenne or rate	
	1 ncrease .	Decrease.	Increase.	Decrease.	${ }_{\text {linctease. }}^{\text {Set }}$	${ }_{\text {Decrease }}$ St
5 years	$13: 13$	-	-	-	$133 \cdot 73$	-
10 years	13:3:3		i0	-	203.33	-
\& years	1337	-	910	-	1043.3	-
6 years	-	$5.50 \cdot 14$	-	1050	-	$1600 \cdot 14$
16 years	-	$10 \cdot 65$	-	350	-	$457 \cdot 85$

The principal points to be noticed in the above table as compared with Table XXXIII. C'., which shows the difference between the total annual loan charges under the original conditions and under the gencrally adopted equated method, are (1) the redurtion in the excess additional charge duing the
 per ammon due solely to the reduction in the sinking fund instalment, and (2) the additional burden imposed upon the first 15 years. As already stated it has been assumed that it is perfectly equitable to consider interest upon the total loan ats a proper charge against revenue or rate during the later years, although the increase in the anumal interest is due to the delay in the reparment of the loan for purely financial reasons. The following statement shows the final reparment of the loan bey means of the instalments in Table XXXIV. ('., ascertained in the above mamer.

STATEMENT NXXIV. H.

Loan of $£ 56,000$ (as above).

Showing the final repayment of the loan by the operation of the sinking fund at the end of the equated period of $2: 3$ years, ly setting aside the original ammal instalments based upon the life of the asset, and a further additional instalment spread equally orer the equated period. Such instalments are shown in Table XXXIV. ©.

Amount thereof at the end of a further 18 years 21249

Amount thereof at the end of a further 8 years 28670
3. Amount of $x^{2} 68: \% 87$ per ammme for S

The amended annual instalments to repay $£ 43 \pm 0$, the balance of loan mororided for by the accumulation of the original instalments betore equation, should properly be distributed over the equated period in such a manner that they will be proportionate to the original instalments, but they may be spread equally orer the equated period without ans great injustice being eaused. Table XXXIV. C. shows that the additional annual instalment under these conditions is $£ 18: 3$ It is, however, necessary to point out the correct method, in order that it may be applied to cases where the magnitude of the loan renders it desirable to make an absolute equation of the incidence of the sinking fund instalment, as well as of the number of rears orer which the equated burden should be spread. If the original periodically decreasing annual instalments are set aside for the respective repayment periods, and are allowed to accumulate until the end of the equated period they will provide $£ 51,660$ of the original loan of $£ 56,000$, leaving $£ 4,340$ to be provided by the acermmation of supplementary anmal instalments to be set aside for similar umbers of years and allowed to accumulate for the same periods. The
first step in the calculation is to divide the $£ 4,340$ in the same proportions as the $t^{5} 51,660$ as follows:

The component parts of the $\pm 4,3+0$ represent the amounts which will be in the fund at the end of the period due to (1) an annual instahment to be set aside for 5 years and then aroumulated for a further 18 years, followed by (2) an annual instalment to be set aside for the next 10 years and then accumulated for a further S years, followed by (3) an annual instalment to be set aside for the final 8 years at the end of which period the fund will mature. This latter period of 8 years is the one which bears the undue burden under the method of equation generally adopted and which it is the object of the present adjustment to remove. Having analysed the component parts of the deficiency of $£ 4,3+0$, the respective instalments are ascertained loy working backwards. In the case of item (1) it is required to ascertain the amount of an anmuity for 5 years, which amount if accumulated for a further 18 years will provide $£ 168: \%$. The first step therefore is to find by standard calculation form No. $\mathfrak{2}$ the present value of $£ 168: \%$ due at the end of 18 years at 3 per cent., and having done so to find by standad calculation form No. Bx the amuity for 5 years which will amount to this sum. The calculation may be made direet by 'Thoman's method as follows:-

To find the aunual instalment to be set aside and accumulated for a given number of years, at the end of which period the amount thereof will rontinue to accumulate for a further specified period and will then amome to a given sum.

Required, the annuity for 5 years which will amount to [the present value of $£ 1683 \cdot 6$ due at the end of a further 18 years].

By Thoman's Tables and Logs.
First period 5 years. Second period 18 years.

Log of the given future sum deduct $\log . \mathrm{R}^{\mathrm{N}},: 3$ per cent. 18 years	$1688 \cdot 60$	$\begin{aligned} & 3 \cdot 2269330 \\ & 0 \cdot 2: 10 \pi 00 \end{aligned}$
Log of	$988 \cdot 92$	$2.99516: 30$
add Log. $u^{n},: 3$ per cent. 5 years		9:339162?
		$12 \cdot 3343253$
deduct Log. $\mathrm{R}^{\mathrm{N}}, 3$ per cent. 5 years +10		$10 \cdot 0641861$
Log of annuity required		$2 \cdot 2701392$

Annual instalment required $\ldots \quad £ 186 \cong 6$

Note. This calculation may be compared with XVI. D. 1 and XXVII.C.

The second item may be ascertained in a similar manner, but the third calculation consists merely of finding the annual instahment, and it may be performed on standard form No. $3 x$. It is not necessary to give the actual details of the calculations, but merely to state the results in the following table which shows the manner in which the above deficiency of $£ 4,340$ will be provided at the end of the equated period.

STATEMENT XXXIV. H.

$$
\text { Loan of } £ 56,000 \text { (as above). }
$$

Showing the supplementary amual instalments to be set aside and added to the sinking fund dwing the equated period of 29 years, to repay $£ 4,340$ of the original loan unprovided by the original ammal instalments added to the fund.

The following supplementary annual instalments are proportionate to the original annual instalments based upon the life of the asset, and are not equal during the whole of the repayment period, as was the case in Table MXXIV.C., and Statement MXXIV. F.

1. Amount of $£ 186 \sim 26$ per annmm for 5 years 98892

Amount thereof at the end of a further 18 years. Calculation XXXIV.G. $168 \cdot 60$
?. Amonnt of $£ 15 t \cdot f$ per ammon for 10 years 15id 60

Amomet thereof at the end of a further 8 years $. . . \quad \quad$ - 4540
B. Amone of $£ 46 \times 2$ per ammon for 8 years
4340.00

The above ammal instalments may be usefully rompared with these previonsly ohtained where the supplementary ammal
 as shown in Table XXXIV. ('. The following table shows Ha anmal instalments moder the present methot:-

TABLE XXXIV.J.

Loan of $£ 56,000$ (authorised for outlays of varying nature having prescribed periods of repayment), the whole to be redecmed in one sum at the end of an equated period.

Showing the ammal charges to revenne or rate in respect of the annual instalments under (1) the equated methor generally adopted, and (2) in which the ammal instahents as originally ascertained are supplemented by additiomal annual instalments spread over the equated period in proportion to the original periods allowed.

Periols of efual incilidence.	$\begin{gathered} \text { Original } \\ \text { annual } \\ \text { anstalnent. } \end{gathered}$	$\begin{gathered} \text { Aldiditional } \\ \text { anpual } \\ \text { instalment. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { anmual } \\ \text { instalnent. } \end{gathered}$	$\begin{gathered} \text { Annual } \\ \text { instaluant } \\ \text { as equated. } \end{gathered}$
5 years	221595	$186 \sim 6$	240:51	1225.58
10 years	184054	1546	199516	172558
\& years	$550 \cdot 14$	$46 \sim$. 99636	120558

It is not necessary to give details of the actual calculations, but the following statement has been prepared in order to show the final reparment of the loan at the ened of the equated periond of $2: 3$ years, by means of the ammal instalments in Table XXXIV. J., therehy proving the aceuracy of the above method.

STATEMENT XXXIV.K.

$$
\text { Loan of } £ 56,000 \text { (as above). }
$$

Showing the final reparment of the loan by the operation of the sinking fund at the end of the equated period of 29 years by annual instahments spread orer the equater period, with due regard to the life of the asset instead of being spead equally over sulh period.

Table XXXIV. J.

1. Amount of $£ 240: 51$ per ammon for 5

\because. Amomit of $£ 199516$ per anmum for 10

Amount thereof at the end of a further 8 years -- 2897.
2. Amount of $5596: 36$ per annum for S

Amount of loan ...
56000

Four methods have now been shown by which the loan of E.5,000 may be repaid before and after the equation of the period, and the total ammal loan chatres for instahment and interest, mader each mothod, will mow he summarised.

TABLE MXXIV.L.

Loan of $£ 56,000$ (authorised for outlays of varying nature having prescribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Comparison of the total annual charges to revenue or rate during the several periods of equal incidence forming part of the original extended period of repayment, and now constituting the equated period, under the following methods:-

1. The generally adopted method of equation in which the instalment is spread equally orer the equated period.
2. The instalments originally calculated before equation based upon the life of the asset.
3. The method in which the original annual instalments, based upon the life of the asset, are set aside during the equated period, and any deficiency is made good by a supplementary annual instalment spread equally over the equated period.

Table XXXIV. C.
4. The method in which the instalments during the equated period are exactly proportional to the life of the individual assets and to the original annual instalments based thereon. Table XXXIV. T.

Annual instalments.

Annal	1.	$\begin{gathered} \text { Methol } \\ \text { athor } \\ \text { above } \end{gathered}$	$\begin{gathered} \text { Methol } \\ \text { aboove } \\ \text { abl } \end{gathered}$	$\begin{gathered} \text { Methol } \\ \text { above } \end{gathered}$
Periorl of equal incidence.	The equated method.	$\begin{gathered} \text { Taple, } \\ \text { XXXIII, } \mathrm{A} . \end{gathered}$	$\begin{aligned} & \text { Table } \\ & \text { xXIV. } \end{aligned}$	$\begin{gathered} \text { Taple } \\ \text { TXXIV. J. } \end{gathered}$
5 years	1725.58	$2217 \cdot 25$	2950.98	$2403 \cdot 51$
10 years	1725.58	$1840 \cdot 54$	197427	$1995 \cdot 16$
8 years	1225.58	$550 \cdot 14$	$683 \cdot 85$	$596: 36$

Interest upon the loan.
See Table XXXIII. B.

Periods of equal incidence	1. The equater method	Method (2) above.	Method (3) above.	Method (4) above.
10 years	1960	1960	1960	1960
S years	1960	1890	1960	1960
S years	1960	1050	1960	1960

Total annual charges for instalment and interest on loan.

Periods of equal incidence		$\begin{aligned} & 1 . \\ & \text { The equated } \\ & \text { methool. } \end{aligned}$	Method above abov	$\begin{gathered} \text { Methol } \\ \text { athove. } \\ \text { abs) } \end{gathered}$	$\begin{aligned} & \text { Method } \\ & \text { (4) } \\ & \text { above. } \end{aligned}$
5 years	Instalment	12:558	221\% 25	2350.98	240351
	Interest	$1960 \cdot 00$	1960.00	1960.00	$1960 \cdot 00$
	'Total	3685.58	$4175 \cdot 25$	$4310 \cdot 98$	436351
10 years	Instalment	122558	1840:54	197427	$1995 \cdot 16$
	Interest	$1960 \cdot 00$	$1890 \cdot 00$	$1960 \cdot 00$	$1960 \cdot 00$
	Total	:3685 58	8230.54	393427	$3955 \cdot 16$
8 years	Instalment	1725:58	$550 \cdot 14$	$68.3 \cdot 87$	$596: 36$
	Interest	$1960 \cdot 00$	$1050 \cdot 00$	$1960 \cdot 00$	$1960 \cdot 00$
	Total	368558	$1600 \cdot 14$	264388	2556.36
6 years	Instalment	--	55014	-	-
	Interest		$1050 \cdot 00$	-	-
	Total	-	$1600 \cdot 14$	-	-
16 years	Instalment	-	107.85	-	-
	Interest		$350 \cdot 00$	-	-
	Total	-	$457 \cdot 85$	-	-

The conclusions to be drawn from the above results are, that the generally adopted method of equating the burden upon successive generations of ratepayers is unjust to the later years of the equated period seeing that the acceleration of the final repayment of the loan ought to impose a larger burden upon each year of the equated period. It is also obvious that on the contrary the generally adopted method of equation relieves the earlier years instead of increasing the annual charge during surh years. The dates of repayment, as originally fixed before equation, were based upon the life of the asset, and this should not be lost sight of in amending the annual instalment after the equation of the period, as it is in fact ignored, in the generally adopted method in which the whole of the outlay is treated as having an equal repayment period. The proper and ronsistent method of apportioning the burden between the several years of the equated period is to adhere as elosely as
possible to the original annual instalments before equation because by this means alone cau two important results be attained, namely, the annual redemption charge to the revenue or rate account of each year will be proportionate to the wastage of the asset and, which is equally important, the loan in respect of outlay of short duration, if not actually repaid, will be in the sinking fund slightly earlier than the date at which it would have been repaid under the original conditions. This will remove an objection at present existing as to re-borrowing for outlay of short duration where the repayment of the loan has been delayed by the equation of the period. A final conclusion seems to be that in making the adjustment in the aunual instalment the true mathematical method last described should be followed although it may involve rather more intricate calculations. The equation of the incidence of the annual interest charges will be considered in the following chapter.

CIIAPTER XXXV.

THE EQUATIUN UF TIIE INCIDENOE UF TAXATION (continued).

INTEREST UPON THE LOAN.

The method of adjesting the annual charges to revende or rate during the equated period in proportion to the life or duration of continuing utility of the asset created oft of the loan.

By charging the revente or rate account of each year of the equated beriod with the annual amount of interest payable before equation, and in addition thereto a supplemextary anctal anout proportionate year by year to the anntal interest charges before equation.

A general sumary of the results obtaned in Cifapters XXXIII, XXXIY and XXXY.

The previons enquiry into the method of adjusting the ammal incidence of the loan burden, after equation, is confined solely to the ammal instalment to be charged to revemue or rate and added to the sinking fund. The result of the enquiry is to prove that the final S years of the equated period are made to bear not only the whole of the relief to the $2 \mathscr{2}$ years of the original period beyond the equated period, but a certain amount in relief of the earlier years of the equated period. The ammal instalments during the final 8 years of the equated period are as follows:--

Before equation, mader the original conditions

$$
\text { Table XXXIII. A. } £ 550 \cdot 14
$$

After equation:
(1) by the mothod generally adopted

Table XXXIII. A. £122558
(2) by the true method just deseribed

Table XXXIV. T. $£ 596 \cdot 36$

The annual charge for interest upon the loan during the final 8 years of the equated period has already been referred to． Under the original conditions，before equation，this annual charge was $£ 1,050$ only，owing to the fact that よ゙っ6，000 of loan had been repaid by the end of the 15 th year．Under the equated method the whole of the luan is not repayable until the end of the equated period，and consequently the interest upon the total loan becomes an annual charge against reveune or rate during the whole of the equated period．The effect is to impose upon the final 8 years of the equated period an interest burden of $£ 910$ per annum in addition to the aunual charge of $£ 1,050$ under the original conditions．The first period of 5 years is charged annually with the same amount of interest upon the loan under both methods；and the second period of 10 years is charged with an additional £T0 per annum only， being interest upou $£ 2,000$ of loan which would otherwise have been repaid at the end of the first period of 5 years．It is therefore apparent that the final S years of the equated period bears the greater portion of the interest of which the final 22 years of the original period is relieved，in addition to the whole of the sinking fund instalment．

The interest charges against the revenue or rate accounts of the final 8 years of the equated period are as follows：－

Before equation，under the original conditions
Table XXXIII．B．$£ 1050$

After equation，under the method generally adopted，and also under the true method， above described，if limited to the annual instalment only Table MXXIT．L．£1960

The total annual loan charges during the final 8 years of the equated period are therefore as follows（Table XXXIV．L．）：

Before equation，under the original conditions：
Instalment ．．．．．．．．．．．．．．．£550．14
Interest ．．．．．．．．．．．．．．．．．．$£ 1050 \cdot 00$

After equation:-

(1) by the method generally adopted:

Instalment £1725.58
Interest £1960.00
む゙3685.58
(2) by the true method just described, relating to the annual instalment ouly :
Instalment £59636
Interest £1960.00
£2556:36

The method just described removes the injustice to the final years of the equated period so far as the anuual instalment is concerned, but leaves untouched the question of the interest upon the loan.

The advisability of making a similar adjustment with regard to the interest charges is a matter upon which opinion may be divided, and in order to elucidate the question it is necessary to state a few general propositions. The practice now adopted in the case of all original loans is to spread the repayment of the principal over a series of years commensurate to the life or period of continuing utility of the asset created out of the loan, with certain limitations as to assets of long continuing or permanent utility. Of the three alternative methods allowed by statute, only one, the instalment method, involves an unequal annual charge in respect of interest upon the loan. In the case of the annuity and sinking fund methods the total annual charges for principal and interest are equal throughout the period of repayment or redemption. But in both these rases interest is payable during such redemption period only, and of course ceases on the final reparment of the loan. In other words, the total ammal loan charges, both for instalment and interest are spread over a period depending upon the life of the asset, and the ammal rhage to revenue or rate is the same in each year of the period. This principle is earried out, and is considered equitable, in the case of individual loans relating to ontlay of one character only, repayable on fixed dates, and in respect of whieh separate sinking funds are or may le kept.

But the conditions are different in the case of the equation of the period of repayment whether the equation is made on the
consolidation of existing loans having varying unexpired periods of repayment, or whether it is made in respect of one loan, relating to outlay of a varied character, each class having different periods of continuing utility and consequent periods of repayment. The effect of the equation of the period as regards the loan holder has already been fully discussed in Chapter XXXII, where it has been ascertained that the arithmetical method of finding the equated period generally adopted, although wrong in principle, may perhaps be considered sufficiently correct.

Prior to an equation due to either of the events already described, the amount to be charged to the rate or revenue account of each year has already been, or may be, ascertained, and the result of any true equation should be that the future substituted total annual burdens are in proportion to the original obligations; any variations therefrom being due only to the substituted period imposed, and since the original annual burdens were not equal during the original periods they certainly should not be equal during the substituted period.

The equation of the incidence of the sinking fund instalment has been fully discussed in Chapter SXXIV, and a method described in detail of finding the future instalments only. If it be required to adjust the annual incidence of the interest upou the loan with a similar object in view, the adjustment cannot be made in quite the same manner, seeing that in this case an equal annual amount of interest has to be paid to the loan holder, but the burden of providing the interest has to be spread unequally over the period. The method is in fact a combination of the sinking fund and annuity methods of repayment of debt, with varying instead of equal annual charges to revenue or rate.

In order to simplify the method of adjustment and to bring it as near as possible to the method of equating the annual incidence of the sinking fund instalment, already described in Chapter XXXIY, it is necessary to reduce the interest upon the loan under both sets of conditions to its corresponding capital value at the end of the equated period of 23 years. The capital value might also be expressed in terms of the present value, but it would not be so convenient because the loan is repayable at a future date. The annual interest of $£ 1,960$, payable upon the total loan during the 23 years of the equated period, will therefore be treated as if it were allowed toaccumulate at compound interest at 3 per cent. until the end of that period. The sum to which $£ 1,960$ per annum will then amount may be ascer-
tained in the usual way by standard calculation form, No. ${ }^{3}$, and will be found to be $£ 6860$ r 70 .

For the present purpose this amount may be treated in exactly the same manner as the total loan of $£ 56,000$ when adjusting the annual incidence of the sinking fund instalment only. In the same way that it was there required to find three annual instalments of mequal amount, to be set aside and accumulated for successive periods of 5,10 , and 8 years respectively, it is now required to find three anmal amounts of interest to be charged to the revenue or rate account, such annual interest charges to be of unequal amount during each of the above periods, and to bear a relation to the life of the asset as expressed in the repayment periods originally prescribed.

In the case of the adjustment of the annual instalment the basis of the calculation was the original annual instalments before equation and in the present example the basis is the original charges for interest upon the loan. In this connection it is important to point out, as will be seen on reference to the second column in the third part of Table XXXIV.L., that there is not, before equation, any definite ratio between the annual instalment and the annual interest charges during any period of equal incidence, consequently the two adjustments are quite distinct.

The next step is to ascerfain the accumulated amount at the cud of 23 years of the original amual interest charges before equation shown in Table XXXIII. B. in the same way that the amount in the sinking fund was ascertained at the same date by the accumulation of the original annual instalments shown in Statement XXXIV. B. as follows:-

TABLE XXXV. 1.
Loan of $£ 56,000$ (anthorised for outlays of varying nature having preseribod periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Showing the accumulated amome at the end of the equated period of 23 years, of the original ammal interest charges, as shown in Table XXXIII. B. (Interest at 3 per cent.)

This statement should be compared with XXXIV.B.
(1) Amonnt of $£ 1,960$ per annum for 5

Amomit thereof at the end of a further
18 year's 1751540
(2) Amount of $£ 1,590$ per amnum for 10

Amount thereof at the end of a further
s years —. - . 2i 44680
(3) Amount of $£ 1,050$ per anuum for 8

Total, being the accumulated amome of the original anumal interest charges, before equation, at the end of the equated period $54499 \cdot 10$

Up to this point it has been ascertained that the accummlated amount, at the end of the equated period of 23 years, of the equal interest charges of $£ 1,960$ per annum after equation is $£ 6: 3607 \cdot 50$ and the corresponding amount of the original varying annual interest charges as shown by the foregoing table
$£ 54499 \cdot 10$
A deficiency of $£ 9108 \cdot 60$
which is exactly comparable with the deficiency of $\pm 4, \because 40$ in the case of the annual instalment (after Statement XXXIV. B.).

The adjustment of the present deficiency may be made by the method described in Chapter SXXIV leading up to Calculation XXXIV. G., and Statement XXXIV. H., but as the conditions as to period and rate per cent, are similar in both cases, and differ only in amount it is possible to adopt a shorter method by utilising the information there obtained and inerease the supplementary annual charges found in Statement XXXIY. H., in the ratio that $4: 340$ bears to $9108 \cdot 60$ as follows:-

TABLE XXXV. B.

Showing the method of finding the supplementary annual charges to revenue or rate to be added to the original anmal interest charges before efuation.

The above anmal interest charges are ascertained from the amounts in the first column by the ordinary rules of proportion or by logs., of which it is not necessary to show the actual working. The total annual interest charges to revenue or rate during the equated period may now be stated in the following table:-

TABLE XXXV.U.

Loau of $£ 56,000$ (authorised for outlays of varying nature having prestribed periods of repayment), the whole to be redeemed in one sum at the end of an equated period.

Showing the annual charges to revenue or rate in respect of interest upon the loan under (1) the equated method generally adopted, and (\because) in which the anmual interest charges originally payable are supplemented by additional amual amounts spread over the equated period in proportion to the original interest obligations.

This table should be compared with Table XXXIV. J.

Equated annual interest charges.

Periods of	Original anuual nequal incidence.	Additional anual interest charges.	Total anterest charges.	Anual interest charges under the
5 years	$1960 \cdot 00$	$390 \cdot 93$	$2350 \cdot 9: 3$	$1960 \cdot 00$
equated method.				

23 years

Statement XXXIV. K. shows the final repayment of the loan by means of the amended annual instalments to be spread over the equated period with due regard to the life of the asset, instead of being spread efually over such period, and thereby proves the accurary of the method adopted with regard to the annual instalment. In a similar manner, although expressed in different terms, the following Statement SXXV. D. proves the accuracy of the method adopted in order to equate the incidence of the ammal interest charges.

S'ATEMENT XXXV.D.

$$
\text { Loan of } £ 56,000 \text { (as above). }
$$

Showing that the accumulated amount of the amended annual interest charges ascertained as in Table XXXV. C. will be equal to the accumulated amount of the equal annual interest charges after equation, both at the end of $2: 3$ years, at 3 per cent. per annum.

This statement should be compared with Statement XXXIV. K.
(1) Amount of $£ 2350 \cdot 93$ per : 1111101 for 5 years
Amount thereof at the end of a further 1s years \ldots... \ldots... ... - $21248 \cdot 80$
(2) Amount of £゚ミ21451 per anmum for 10 years ...
Amount thereof at the end of a further
\& years $\because 215940$
(3) Amount of $£ 114$ per anmum for 8
year. $\quad . . \quad . . \quad . . \quad . . \quad \quad 10199.50$
which is the accumulated amount of an annuity of $£ 1960$ for 23 years at 3 per cent. as previously ascertained £63607.70

The above calculations (1) and ($\underset{\sim}{\sim}$) have been made direct by the " method by step" shown in statement XXVII. C.

It will be gathered from the above Statement XXXV. D., that the ammal interest charges to revenue or rate during the first two periods of 5 years and 10 years are greater than the ammal amounts of interest payable to the loanholders during those periods after equation, as follows:-

$$
\begin{aligned}
& 5 \text { years }(2350 \cdot 93-1960) \text { an inrrease of } 390.93 \\
& 10 \text { years }(2214.51-1960) \text { an increase of } 254.51
\end{aligned}
$$

and that the ammal amounts of interest parable to the loanholders during the final 8 years of the equated period are greater than the amended annual amounts charged to revenue or rate during that period, in Statement XXXV. D., as follows:

8 years (1960-114i), a decrease of $813 \cdot 00$.

The correctness of the foregoing calculations is proved by the following statement giving the accumulated amounts of the above annuities at the end of the $2: 3 r d$ year，without details of the actual calculations which are similar to MXIII．C．：－

Amount of $£ 390 \cdot 93$ per annum for 5 years，accu－ mulated for a further period of 18 years at $;$

Amount of $£ \mathscr{2} 5451$ per annum for 10 years，accu－ mulated for a further period of 8 years，at B
per cent．per annum ．．．．．．．．．．．．．．．．．．£3696．00
£T229．40
which is equal to the
Amount of $£ 81300$ per amnum for 8 years at $: 3$ per
cent．per annum ．．．．．．．．．．．．．．．．．．．．．さここと9．40

This proves that the amounts charged to the revenue or rate account during the first 15 years，in excess of the amounts annually payable to the loanholders during that period，will， if accumulated，be sufficient to provide the future annual deficiencies in the amounts charged to revenue or rate account during the final $\&$ years of the equated period．It also points out the mothods to be adopted as regards the actual book－ keeping，and indicates the opening of an account which may be termed an：－

> "Equated Loan Interest. Reserve Arcount,"
and which will closely resemble the reparment of a loan by an equal annual instalment of principal and interest combined． or the annuity method，but with a rarying instead of an equal annual charge to revenue or rate．To the extent that the annual charges to revenue or rate are，during the earlier years， greater than the annual amounts payable to the loanholders by way of interest，the account will also partake of the nature of a sinking fund，and will therefore require the same careful future supervision as to the amount standing to the credit of the account，the rate of accumulation，and also the immediate preparation of a pro forma account showing the ultimate work－ ing out of the account．

As regards the actual hook－keeping the above interest reserve account may be treated in two distinct ways，namely，by
crediting the account with the total annual amounts of interest charged to revenue or rate, as shown in Table XXXV. C. and debiting the account with the annual interest payable to the loanholders, which is the more scientific method as yielding an exact record of the actual transactions. The other method is to treat it as a reserve account pure and simple and credit it only with the above excess annual amounts of $£: 390.93$ and $£^{\circ} 25421$ charged to revenue or rate account during the periods of 5 and 10 years respectively. During the third period of 8 years the interest reserve account would of course be debited, and the revenue or rate account credited, with the difference of $£ 81: 3$ per annum already referred to. Cnlike a sinking fund proper, the amount to the credit of the interest reserve account need not be separately invested, but may be merged in the general assets of the undertaking, provided always that the proper annual amounts of interest at the calculated rate of accumulation are credited to the account, and charged to the current year's revenue or rate account. If the account be kept in this manner and compared annually with the pro forma account there should not arise at any time any necessity to make an adjustment so long as the repayment period remains unaltered. The following pro forma account will illustrate the method of keeping the interest reserve account applicable to the foregoing example:-

TABLE XXXY. E.

Equated Loan Interest. Reserve Account.
Interest, 3 per cent. per annum.

Year.	Amount to credit at of year.	Interest thereon.	Interest charged to revenue or rate.	Total credits,	Interest laid to holders	Balance forward.	Year
1	Nil	Nil	2350.93	2350.93	$1960 \cdot 00$	390.93	
2	$390 \cdot 93$	11.73	2350.93	275359	$1960 \cdot 00$	-93.59	
3	793.59	23.81	2350.93	$3168 \cdot 33$	$1960 \cdot 00$	120833	
t	1208:3?	36.25	2350933	3595.51	$1960 \cdot 00$	1635.51	
5	1635.51	$49 \cdot 06$	2350.93	40:35:50	1960.00	2075.50	5

20	$62 \cdot 26$	22	43	1960.00	2392.27
2392.27	71.7	221	467855	$1960 \cdot 00$	$2 \sim 1855$
8271	81	22	501	196	$3054 \cdot 62$
9305	91	22	530	$1960 \cdot 00$	$3400 \cdot 7$
10340	1020	22	57	$1960 \cdot 00$	3757:30
$3757 \cdot 30$	112.	2214:5	6084:5	1960.00	4124.53
4124.53	123.73	221451	6462.74	$1960 \cdot 00$	4502
$4502 \cdot 7$	135.08	22145	6852:36	$1960 \cdot 00$	$4892 \cdot 36$
4892:3	146	22	T25	1960.00	5293.64
529:	158	221	r66	$1960 \cdot 00$	

$16 \quad 5707.00$	171'2	$114 \cdot 00$	7025:21		5065×21	16
5065.21	151.96	$114 \% \cdot 00$	636417	$1960 \cdot 00$	4404-17	
440	$139 \cdot 12$	$1147 \cdot 0$	5683%	$1960 \cdot 00$	\%20 ~ 0	18
$3 \sim$	11	11	49	196	3021.99	19
302	$90 \cdot 66$	1	425	$1960 \cdot 00$	229	
299	68.9	114	3515.6	$1960 \cdot 00$	$1555 \cdot 64$	
155	46	$114 \% \cdot 00$	274	$1960 \cdot 00$	\%89	
889\%	$2: 3$	114%	1960	1960	Nil	

A comparison has already been made, in Table XXXIV. L., between the total annual loan charges under the original conditions and under the generally adopted method after equation; and a final comparison will now be made between those methods and the one just described. The following results are worthy of careful study and show the very wide difference between the incidence of the total anmual loan burden under the generally adopted method after equation on the one hand as compared with the annual charges under the original conditions before equation and also under the amended method just described. Under the method generally adopted the annual burden, both as regards the annual instalment and interest upon the loan, is spread equally orer the whole of the equated period with a total disregard to the life of the asset and the consequent reparment periods originally based thereon. The following table shows that the original incidence of the burden is departed from under the generally adopted method after equation in that it relieves the earlier years, and throws a severe additional burden upon the later years, of the equated period. The result of the author's method is that the revenue or rate account of each year of the equated period is charged with an amount in respert both of annual instalment and interest upon the loan, whieh is exactly in proportion to the amount with which it would have been charged under the original conditions. These amended ammal charges are greater than moler the original conditions and include, as is equitable, the relief to the post equated period, and such relief is imposed rateably upon each year of the equated period instead of being charged against the later period of 8 years only.
The Equation of the Incidence of Taxation.
Showing the annual charges in respect of the sinking fund instalment, and interest upon the loan, during each year of the equated period.
d. Under the original conditions before equation.
to the annual instalment and interest upon the loan. Note.-'The above letters are used in the following charts.
D. TABLE XXXIV. J.
Equated method as described. Total.
4754.44

In order to make the foregoing results perfectly clear, three charts have been prepared as follows:-

The Eqlation of the Incidexee of Tixation. Chart. I.
Showing the total ammal loan charges in respect of the sinking fund instalment and interest upon the loan, during each year of the original and equated periods.
(A). Tuder the original conditions, before equation.
(B). Ender the equated method, as generally adopted.
(C). Under the author's method of equation relating to the amual instalment only, as described in Chapter XXXIV.
(D). Cnder the author's methor of equation relating to the annual instalment and interest upon the loan, as desrribed in Chapter MXXV.

The Equation of the Incidence of Tanation. Chart. II.
Showing the total annual loan charges in respect of the sinking fund instalment and interest upon the loan, during each year of the original and equated periods.
(A). Tnder the original conditions, before equation.
(B). Tnder the equated method, as generally adopted.
(D). Tnder the author's method of equation relating to the annual instalment and interest upon the loan, as described in Chapter XXXY.

Time: Eqcation of the Inchence of Taxition. Cilirt III.

Showing the difference between the total anmual loan charges in respect of the sinking fund instalment and interest upon the loan, during earh year of the original and equated periods:-
(13). Thide the equated method as generally adopted, in which the charge is spread equally over the period.
(D). Thder the method deseribed in Chapters XXXIV. and XXXY, in which the reveme or rate arcount is charged with ammal sums based upon the life of the asset, and proportionate, year by year, to ther anmual rharges before equation.

These charts show in graphic form: -
In Chart I, the total annual loan charges under each mothorl, during each period of erpal incidence. These annual charges are divided as hetween the interest upon the loan which is shown in the lower part of the diagram, and the annual instalment which is shown above it. The height of each column represents the total ammal loan charges, and the width of the columns represents the number of years in the periods of equal incidence. This chart brings out clearly the comparatively small relief to the earlier years of the equated period and the large increased annual burden during the final eight years of such period.

In Chart II, the total annual charges under each method during each period of equal incidence are further compared, but without any subdivision as between the interest upon the loan and the annual instalment. The broken line shows the equal annual hurden under the generally adopted method after equation. The thin umbroken line shows the annual burdens under the original conditions before equation, which were based, both as regards instalment and interest, upon the life of the asset. The thick unbroken line shows the corresponding annual charges under the anthor's method of equation. It will be noticed that the two unbroken lines agree very closely and differ widely from the broken line of the generally adopted method.

In Chart III, the total annual loan charges under the author's method of equation are taken as the standard or zero, and are compared, as to the equated period, with the charges under the generally adopted method after equation, and as to the post equated period with the charges under the original conditions. The area below the zero line represents, in the case of the erpuated period, the relief afforded by the generally adopted method after equation as compared with the author's method, and as regards the post equated period, the absolute relief afforded by the equation of the period irrespective of the method in which the burden is distributed over the equated period. The area above the zero line, which oecurs only in the final 8 vears of the equated period, represents the additional annual burden imposed upon this period under the generally adopted method as eompared with the author's method. The actual amounts of relief and overcharge are taken from Table XXXV. F., and relate to the loan of $£ 56,000$ used to illustrate the problem, ensequently any comparison based
solely upon that table must be made with this actual loan in mind. In order therefore to show the results in a form which will be readily appreciated, the above differences have each been expressed, in the chart, in terms of an annual rate. The basis upon which this has been done is a statement by a witness before one of the Parliamentary Committees appointed to enquire into such questions, who proved that in a particular case the immediate effect of an equation of the period was to reduce the rates by $3 d$. in the $£$ upon the annual value. This reduction was of course, only between the annual instalments, before and after equation, because during the earlier years of the equated period, as shown by Chart I, there is not any change in the amount of interest payable, no part of the loan having then been repaid by the maturing of the sinking fund for the shorter period. If, however, the comparison be made between the amount payable after equation and the proper amount which should have been payable under the author's method as a consequence of such equation, the saring would be 6.52 pence in the pound instead of 3 pence, and in the chart the relief to the first part of the equated period of 5 years has been taken at that figure. Tpon this basis, the effect of an equation of the period, in the present instance, under the method generally adopted, is to relieve the annual rate accounts as follows:-
during the equated period:-
for a period of 5 years of $6: 52$ pence in the $£$.
for a period of 10 years of 320 pence in the $£$.
during the post equated period:-
for a period of 6 years of $9 \cdot 6$ pence in the $£$.
for a period of 16 years of $\mathfrak{2} \boldsymbol{7 9}$ pence in the $£$.
and to impose an additional amual burden upon the final 8 years of the equated period of $11 \cdot 85$ pence in the $£$.

The above method of adjusting the annual incidence of the total loan burden may, and undoubtedly will, appear complicated when compared with the rough and ready method now adopted. It will certainly increase the labour involved upon the equation of the period of repayment of new loans authorised for outlays of varying natures and also upon the comsolidation of existing loans, hut it is sound in principle and carries out the fumbamental law of local finance, that the
present generation shall bear at least its due burden and not transfer it to future years. It is very tempting to local leaders of finance to pose as the benefactors of the present ratepayers by adopting a method, having a high-sounding title, which has the immediate effect of reducing the present burden at the expense of the future; but it ought to be recognised, that where the only means of paying for municipal works is by annual contributions out of revenue or rate, to be spread over a prescribed period of years fixed after very careful enquiry as to the life of the asset, any reduction in the period of repayment, due solely to causes of a purely financial nature, cannot possibly equitably reduce the annual burden but must inevitably increase it. Any departure from this principle is a violation of the recognised canons of local government.
A. \qquad under original conditions-before equation.
B. \qquad under equated method, as generally adopted.
C. ---- - Author's equated method (annual instalment only).
D. \qquad Author's equated method (annual instalment, and interest on the loan)
The Equation of the Incidence of Taxation.

A. \qquad under original conditions-before equation.
B. \qquad under equated method, as generally adopted.
C. - - - - - Author's equated method (annual instalment only).
D. \qquad Author's equated method (annual instalment, and interest on the loan).

\therefore. under original conditions-before equation.
B.
B. $-\ldots-\ldots+$, under equated method, as generally adopted.
I). \qquad Author's equated method, (amnual instalment, and interest on the loan

A. under original conditions-before equation.
B. \qquad under equated method, as generally adopted.
D. \qquad Author's equated method (ammual instalment, and interest on the loan).

Appendix.
Calculations Referred to in the Text.

Note. The number of the calculation refers to the chapter to which it relates.

The detailed working of the method (A) by formula is not incluted in any of the following calculations, but may be found by referring to the examples given in the text, namely :

Form No. 1. Amount of one pound. No. (IV) 3 .
2. Present value of one pound. (V) $\mathfrak{\sim}$.
3. Amount of one pound per anumm. (VI) 2 .

3 x . Sinking fund instalment.
(XV) 1.
4. Present value of one pound per annum. (VII) 2 .
5. Ammity which one pound will purchase. (VIII) \mathfrak{D}.

Full instructions as to the use of the author's standard calculation forms are given in Chapter X.

To find the additional sinking fund instalment to be set aside during the mexpired portion of the repayment period, to compensate for a deficiency in the fund. Table V.

Required the annual instalment to be set aside and accumulated for $1: 3$ years at $: 3 \frac{1}{2}$ per rent., which is equivalent to a deficiency of $£ 469 \cdot \mathrm{t} 4$ in the amount now in the fund.
(C) By Thoman's Table, 3 $\frac{1}{2}$ per cent. Rule 3, Chapter TIII. Log. Present sum 469.744 2.6718612 add Log. $a^{n}, 13$ years $. . . \quad . . .$.
$11 \cdot 6589086$
deduct 10 1.6589086
Required annual instalment £455941

Standard Form, Vo. 1.
No. (XY) 4.

To find the portion of original loan which will be provided by the future accumulation of the present investments representing the fund.

Table I.
lequired the amount of $£ 9,4(6)$, at the end of 13 years, accumulated at $: 3 \frac{1}{2}$ per cent.
(f) By Thoman's Table, $3 \geq 2$ per rent. Rale ? , Chapter IV.

To find the portion of original loan which will be provided by the accumulation of the original annual instalments to be set aside during the mexpired portion of the redemption period.

Table 1 II.
Required the amount of an annal instalment of $£ 680 \cdot 2: 44$, to be set aside and accomulated for 13 years at $: 3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule :3, Chapter VI.
$\begin{array}{llllllr}\text { Log. Ammity... } & \ldots & \ldots & \ldots & \ldots & 6802: 4 & 2 \cdot 8326581 \\ \text { add Lom. } R^{N}, 13 & \text { years, } & +10 & \ldots & \ldots & 10 \cdot 1942945\end{array}$
add Log. $\mathrm{R}^{\mathrm{N}}, 13$ years, $+10 \quad \ldots \quad \ldots \quad 10 \cdot 1942945$
130268826
deduct Log. a^{n}... s9870474
4.0398352

Required future amount $£ 10960 \cdot 62$

Standard Form, Mo. 1.
No. (XV) 6.
To find the portion of original loan which will be unprovided if the present deficiency in a sinking fund be allowed to remain uncorrected during the remainder of the redemption period.

Table I.
Required the amount of $£ 469 \cdot \mathfrak{t}$, at the end of 13 years, accumulated at $3 \frac{1}{2}$ per cent.
(B) By Table I, $1: 3$ years, $: 3 \frac{1}{2}$ per cent. Rule ${ }^{\mathfrak{D}}$, ('hapter IV.

To find the sinking fund instalment required to provide the amount of loan represented by a deficiency in the fund.

Table III.
Required the ammal instalment to be set aside and accumulated at $: 3 \frac{1}{2}$ per cent., to provide $£ 34659$ at the end of 13 years.
(C) By Thoman̊ Tahle, : Pl $_{2}$ per cent. Rule ?, Chapter XIII.

Log. Amount of loan add Log. u^{n}, 13 years...	$i: 34659$	$\begin{aligned} & 2 \cdot 8660855 \\ & 8 \cdot 98704 i 4 \end{aligned}$
deduct Log. $\mathrm{R}^{\mathrm{N}}+10 \ldots$	$\begin{aligned} & 11 \cdot 8531331 \\ & 10 \cdot 19+2245 \end{aligned}$
		$1 \cdot 6589086$
Required anmual instalment...	\ldots	£45.5941

To find the amount of loan which will be provided by the accumulation of the angmented anmal instalment.

Table III.
Required the amount which should stand to the eredit of a sinking fund representing the accumulation of an annual

(13) By Table III, 1: years, : $\frac{1}{2}$ per cent. Rule ? (hapter VI.

Log.	Amome of ± 1 per anmm udd Log. ammity ...	$\begin{gathered} 16 \cdot 11: 9: 3 \\ 725: 8: 8 \end{gathered}$	$\begin{aligned} & 1 \cdot 20515 i 1 \\ & 2 \cdot 8608335 \end{aligned}$
			$4 \cdot 0680108$
	Required future amount	£11695*9

To find the aceumulated amount of an amual instalment to be set aside for a limited period only; at the end of that periond the amome so found to be accumulated for a further presaribed period. Method by "step." Table II.

Rerpuired the present value of $\pm 7: 3659$ due at the end of 8 years at $3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. liule 3 , Chapter V^{2}.

$$
\begin{aligned}
& \text { Log. Future sum } 2.34659 \text {.28660455 } \\
& \text { deduct Log. R }{ }^{\mathrm{N}} \text {, } 8 \text { years } 0.1195228 \\
& \text { 2.7465629 }
\end{aligned}
$$

Required present value £55r•908

To find the ammal instalment which will amount to a given sum if acemmulated for a prescribed mumber of years. Table III.

Reguired the ammal instalment to be set aside and accumulated at $: 3 \frac{1}{2}$ per cent. to provide $\pm 557 \cdot 908$ at the end of 5 years.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule?, Chapter XIlI.

$$
\begin{aligned}
& \text { add Log. } u^{n}, 5 \text { years } 9: 3+5: 9: 2 \pi \\
& \text { 1209919001 } \\
& \text { deduct Log. } \mathrm{R}^{\mathrm{N}}+10 \ldots \text {.........artiont } \\
& 2.017198+ \\
& \text { Required annual instalment... } £ 104 \cdot 0: 395
\end{aligned}
$$

To find the amount of loan which will be provided by the future aecumulation of the present investments representing the fund.

Table I.
Required the amont of $\pm 9,46 \%$ at the end of 5 years, acemmulated at $: 3 \frac{1}{2}$ per rent.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule :3, Chapter IV.

Standard Form, No. 3. No. (XVI) 6.

To find the amount of loan which will be provided by the future accumulation of the augmented amual instalment.

Table III.
 set aside and accumulated for 5 yems at $: 3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, :3늘 per cent. Rule 3, Chapter VI.

add Log. R ${ }^{\mathrm{N}}, 5$ vears, $+10 \ldots$.... 10 0itionir

Required future amount £ $4205 \cdot 637$

To find the amome of loan which witl be provided by the aceumulation of the anoment in the fund.

Table 1.

Required the amount of $\pm 15+4 t i l$ at the end of 8 gears, aceumulated at $3 \frac{1}{2}$ per cent.
(B) By Table I, \& years, $: 3 \frac{1}{2}$ per cent. Rule ${ }^{2}$, Chapter IV.

Stemdard Form, To. 3. No. (XVI) 8.

To find the amount of loan which will be provided by the accumulation of the original amual instalment. Table III.

Recpuired the amount of an amual instalment of $£ 680: 24$ to be set aside and accumulated for 8 years at $3 \frac{1}{2}$ per cent.
(B) Br Table III, 8 years, $: 3 \frac{1}{2}$ per cent. Rule ${ }^{2}$, Chapter V1.

Log. Amount of $£ 1$ per annum ... 9.05168 0.956~~296
add Log. ammity 680'2:4 $2 \cdot 8 ; 26581$
3.789387

Required future amount £615\%•• 6

To find the future amual increment to be accumulated to provide the balance of loan not provided by the present investments representing the fund.

Table III.
Required the annmal instalment to be set aside and accumulated at $3 \frac{1}{2}$ per cent. to provide $£ 17,03 \%$ at the end of $1: 3$ years.
(C) By Thoman's Table, :32 per cent. Rule :3, Chapter XIII. Log. Amount of loan 1i032 42312656
add Log. a^{n}, 13 years S.98j04it
13.2183130
deduct Log. $\mathrm{R}^{\mathrm{N}}+10 \ldots$..... $10 \cdot 1942245$

30240885
Required annual instalment £105;.033

S'tandard Form, Vo. Br.
No. (XVI) 10 .

To find the anmal sinking fund instalment previously set aside in error to provide the deficient amount now in the fund.

Table III.
Reguired the ammal instalment to be set aside and acrumulated at $: 3 \frac{1}{2}$ per cent. to provide $£^{\prime} 9,46: 3$ at the end of 12 years.

Log. Amount of loan 946:3 397602ss
deduct Log. amount of $£ \mathrm{l}$ per amm. $1+(i 0) 19 \quad 1 \cdot[6+411$?
$2 \cdot 8116176$

To find the amount by which the annual sinking fund instalment may be reduced in consequence of a payment into the fund of proceeds of sale of part of the security for the loan.

Table V.
Required the annuity which may be purchased with $£ 4,560$ for 13 years at $3 \frac{1}{2}$ per cent.
(B) By Table V, 13 years, $3 \frac{1}{2}$ per cent. Rule 2, Chapter VIII.

| Log. Annuity $£ 1$ will purchase \ldots | $0 \cdot 097061$ | $\overline{2} \cdot 9870474$ | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| add Log. present sum \ldots | \ldots | 4560 | $3 \cdot 6589648$ | | |
| | | | | | |
| | $2 \cdot 6460122$ | | | | |

Standard Form, No. 1. No. (XVII) 2.

To find the portion of the original loan which will be provided by the future accumulation of the present investments representing the fund.

Table I.
Required the amount of $£ 9932 \cdot 744$ at the end of 13 years, accumulated at $3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule 3, Chapter IV.

Standard Form, No. 1. No. (XVII) 3.

To find the portion of the original loan which will be provided by the future accumulation of the proceeds of sale of assets paid into the fund.

Table I.
Required the amount of $£ 4,560$ at the end of 13 years, accumulated at $3 \frac{1}{2}$ per cent.
(B) By Table I, 13 years, at $3 \frac{1}{2}$ per cent. Rule 2, Chapter IV.

| Log. Amount of $£ 1$ | \ldots | \ldots | \ldots | 1.56395 | 0.1942245 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| add Log. present sum | \ldots | \ldots | 4560 | 3.6589648 | |
| | | | | | 3.8531893 |
| | | | | | |
| Required future amount | \ldots | \ldots | \ldots | $£ 7131.64$ | |

Standard Form, No. $3 x$. No. (XVII) 4.

To find the ammal instalment which will provide the amount of loan represented by the proceeds of sale of part of the security paid into the fund. Table III.

Required the annual instalment to be set aside and acermmulated at $3 \frac{1}{2}$ per cent. to provide $£ 131.64$ at the end of 13 years.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule 3 , Chaper XIII.
$\begin{array}{rllllll}\text { Log. Amount of loan } \ldots & \ldots & \ldots & 7131.64 & 38531893 \\ a d d \log . a^{n}, 13 \text { years ... } & \ldots & \ldots & \ldots & 898704 i 4\end{array}$
$12 \cdot 8402367$
deduct Log. $\mathrm{R}^{\mathrm{N}}+10 \ldots$... \ldots 10 1942245
26460122

Required annual instalment... £442.6008

To find the amount of loan which will be provided by the future accumulation of the reduced ammal instalment consequent upon the payment into the fund of the proceeds of sale of part of the security.

Table III.
Required the amount of an anumal instalment of $£ 2: 2 \cdot 633$ to be set aside and accumulated for 13 years at $: 3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule 3, Chapter VI.

	12.5701313
deduct Log. a^{n}	8.98704i4

35830839

Required future amount
$£ 3823.987$

Standard Form, No. B_{x}.
No. (XVII) 6.
To find the future annual increment to be acrumulated to provide the balance of loan not provided by the investments representing the fund.

Table III.
Required the annual instahment to be set aside and accumulated at $3 \frac{1}{2}$ per cent. to provide $£ 1 \because 00 \because 26$ at the end of $1: 3$ years.
(B) By Table III, $1: 3$ years, $3 \frac{1}{2}$ per cent. Rule \mathfrak{Z}, C'hapter XIII.

Log. Amount of loan $12002 \cdot 264.0792630$ deduct Log. amount of $£ 1$ per ann. $16 \cdot 11: 303$ 1•2071:
2.8520859

Required ammal instalment... £i44•8i9

To find the amomet by which the original annal instalment may be reduced in consequence of the withdrawal of part of the loan from the operation of the fund ly reason of its conversion into ordinary share capital or stock. Table III.

Required the amual instahment to be set aside and accumnlated at $: 3 \frac{1}{2}$ per cent. to provide $\pm 5,000$ at the end of $1: 3$ years.
(C) By Thoman's Table, $: 3 \frac{1}{2}$ per rent. Rule 3 , Chapter XIII.

Log.	Amount of loan add Log. a^{n}, $1: 3$ years	5000	$\begin{aligned} & 36989700 \\ & 89870474 \end{aligned}$
	deduct Log. $\mathrm{R}^{\mathrm{N}}+10$	\ldots	$12 \cdot 6860174$ $10 \cdot 1942245$
			2.4917929
	Required annual instalment	\cdots	$£: 310: 308$

To find the amended ammal instahent which will provide the balance of loan not provided by the future accomulation of the prosent investments and the original ammal instalment, after withdrawal of part of the loan from the operation of the fund.

Table III.
Required the ammal instalment to be set aside and acermmutated at $3 \frac{1}{2}$ per cent. to provide $\pm 6695: 30$ at the end of $1: 3$ years.

$$
\begin{aligned}
& \text { Log. Amoment of loan 6695:30 38255Ti00 } \\
& \text { deduct Log. amount of } \pm 1 \text { per amm. } 16 \cdot 11: 30: 1 \times 0 \pi 1 \pi \mathrm{ra}
\end{aligned}
$$

To find the future ammal increment to be acemmatated to provide the balance of loan not provided by the present investments representing the fund. Table III.

Required the annual instalment to be set aside and acrommatated at $: 3 \frac{1}{2}$ per cent. to provide $\mathfrak{f} 1 \because, 0: 3$ at the end of $1: 3$ years.
(C) By Thoman's Table, $3 \frac{1}{2}$ per cent. Rule : Chapter XIII.

$$
\begin{aligned}
& \text { Log. Amount of loan } 120: \% \text { 4.0803378 } \\
& \text { add Log. } a^{n}, 1: \text { years S95i04i4 } \\
& 13.0673852 \\
& \text { dedurt Log. } \mathrm{R}^{\mathrm{N}}+10 \ldots \text {...... } 10 \cdot 1942245 \\
& 2 \cdot 8731607 \\
& \text { Required annual instalment... £746.725 }
\end{aligned}
$$

To find the amount which should stamd to the eredit of the sinking fund.

Table III.
Required the amount of an annal instalment of $\pm 5,500$ to be set aside and arcomulated for i years at \because prer cent.
(B) By Table III, i years, 's per cent. Rule: ', Chapter VI.

Required future amount £5i46s.48

To find the annual instalment for an even number of rears which approximates to the instalment of specified amount not found by calculation.

Table III.
Required the annual instalment to be set aside and accumulated at 3 per cent. to provide $£ 150,000$ at the end of 16 years.
(B) By Table III, 16 years, 3 per cent. Rule $\mathfrak{2}$, ('hapter XIII.

Log. Amount of loan deduct Log. amount of $£ 1$ per ami.	$150,000$	$5 \cdot 1 ; 60913$
	$\because 2 \cdot 1569$	$1: 304423: 3$
		$3 \cdot 8716680$
Required annual instalment...	\%441.6285

Standard Form, No. 3.
No. (XVIII) 6.

To find the amount of loan which will be provided by the instalment of stated amount at the end of the approximate period of even years.

Table III.
Required the amount of an annal instalment of \pm, 500 to he set asitle and accumulated for 16 years at 3 per cent.
(C) By Thoman's Table, 3 per cent. Rule :3, Chapter II.

To find the portion of the original loan, being the acmumulation of an intentional ervor in the sinking fund instalment assumed in the adjustment.

Table 1II.
Required the amount of $£ 583915$ per ammun for 16 years at 3 per cent.
(B) By Table III, 16 years, 3 per cent. Rule ${ }^{2}$, ' 'hapter VI.

Log. Amount of $£ 1$ per anmum ... $20 \cdot 1569 \quad 1 \because 34429: 3$
$a d d$ Log. annuity 58.3715 1•7662008
3.0706241

Required future amount £1176.58

Standard Form, No. $3 x$.
No. (XVIII) 8.

To find the amount by which the original annual instahent may be reduced in conserquence of the withdrawal of part of the loan from the operation of the sinking fund ly reason of its conversion into ordinary shame mapital or stock.

Table III.
Required the annual instalment to be set aside and accumulated at $\ddot{3}$ per cent. to provide $£ 45,000$ at the end of 9 years.
(B) By Table III, 9 years, :3 per cent. Rule 2 , (hapter XIII. Log. Amount of loan $45000 \quad 4.6532125$ deduct Log. amoment of ± 1 per amm. $10 \cdot 1591 \quad 1 \cdot 0068555$

36463570
Required annual instalment... £4429:523.

To find the amomut which should stand to the reedit of the fund.

Table 111.
Required the amount of an ammal instalment of $£ 5441 \cdot 6285$ to be set aside and accumulated for \bar{a} years at :' per cent.
(C) By Thoman's Table, '3 per cent. Rule :', Chapter VI.

Log. Annuity	.. $i+41.6285$	$3 \cdot 8.16680$
add $\log \cdot \mathrm{R}^{\mathrm{N}}$, i years, +10		10.0898606
		1:9615286
deduct Log. a ${ }^{n}$	\ldots....	$9205492 \sim$
		4.7560364
Required future amount	$£ 5 \sim 021 \sim 1$

To find the amome by whirh the ammal instalment may be reduced in consequence of a suplus in the fund. Table V . Required the amuity which may be purchased with $£ 4 t i \cdot{ }^{2}$ itor 9 years at :' per cent.
(C) By Thoman's Table, :' per cent. liule :', ('hapter V'lll.

To find the amonnt of loan which will be provided by the future accumulation of the present investments of the amount in the fund.

Table I.
Required the amomit of $555+6848$ at the end of 9 rears, accumulated at :s per cent.
(C) By Thoman's Table, 3 per cent. Rule ?', Chapter IV.

Log. Present sum add Log. $\mathrm{R}^{\mathrm{N}}, 9$ years...	$\ldots 59+6848$	$\begin{aligned} & 4 \cdot 759+297 \\ & 0 \cdot 11553350 \end{aligned}$
		4.8749647
Required future amount	£74983:395

To find the amount of loan which will he provided by the future accumulation of the reduced annual instalment in consequence of the withdrawal of part of the loan from the operation of the fund.

Table III.
Required the amoment of an ammal instalment of $£ 9954 \cdot 66$ to be set aside and acrumulated for 9 years at :' per rent.
(B) Bỵ Table III, 9 years, :' per cent. Rule?. ('hapter VI.

Log. Amonnt of $£ 1$ per anmum add Log. annuity	$\begin{aligned} & 10 \cdot 1591 \\ & 29.54 \cdot 66 \end{aligned}$	$\begin{aligned} & 1 \cdot 0068555 \\ & 3 \cdot 4705075 \end{aligned}$
		4.4753630
Required future amount	\ldots	£30016:\%0

To find the amount of loan represented by the adjustment to be made in the anmal instalment in consequence of an intentional error introduced for purpose of calculation. TableIII.

Required the amount of an annual instalment of $£ 40 \cdot 215$ to be set aside and accumulated for 9 years at 3 per cent.
(C) By Thoman's Table, 3 per cent. Rule 3, Chapter VI.

| Log. Annuity | \ldots | \ldots | \ldots | \ldots | $40 \cdot 215$ | $1 \cdot 6043881$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| add $\log . R^{N}, 9$ | years, | $+10 \ldots$ | \ldots | \ldots | $10 \cdot 1155350$ | |
| | | | | | | $11 \cdot 7199231$ |
| deduct Log. a^{n} | \ldots | \ldots | \ldots | \ldots | \ldots | $9 \cdot 1086795$ |
| | | | | | | $2 \cdot 6112436$ |
| Required future amount | \ldots | \ldots | \ldots | $£ 408 \cdot 549$ | | |

Standard Form, Vo. 4.
No. (XVIII) 14.
To find the present amount to be paid into the fund to compensate for the intentional error introduced for purposes of calculation.

Table IV.
Required the present value of an amuity of $\pm 40 \div 15$ for 9 years at 3 per cent.
(C) By Thoman's Table, :' per cent. Rule 3, Chapter VII.

$$
\begin{array}{r}
\text { Log. Amuity } \\
\ldots
\end{array} \ldots
$$

To find the future annal increment to be accumulated to provide the balance of loan not provided for by the present investments representing the fund.

Table III.
Required the anmual instalment to be set aside and accumulated at $: 3$ per cent. to provide $£ 45: 502$ at the end of 9 years.
(C) By Thoman's Table, ? per cent. Rule?, Chapter XIII.

$$
\begin{aligned}
& \text { Log. Amount of loan 4i531.52 4.6r69818 } \\
& \text { add Log. } a^{n} \text {, } 9 \text { years } 9 \cdot 1086795 \\
& 13 \cdot 7856613 \\
& \text { deduct Log. R }{ }^{\mathrm{N}}+10 \ldots \text {..... } 10 \cdot 1155350 \\
& 36701263 \\
& \text { Required annual instalment £4678.71 }
\end{aligned}
$$

Standard Form, No. S.
To find the portion of original loan which will be provided hy the future accumulation of the amual income from the present inrestments.

Table III.
Required the amount of an annal income of $£: 47 \cdot 648$ to be added to the simking fund and accumulated for $1: 3$ years at 3 per cent.
(B) By Table III, 13 years, $: 3$ per cent. Rule ${ }^{2}$, Chapter VI.

Log. Amount of $£ 1$ per annum ... $156178 \quad 1 \cdot 1936196$
add Log. annuity \ldots... ... :34:648 25411397
3.7347593

Required future amount £5429•494

To find the portion of the original loan which will be provided by the future accumulation of the origiual instalment.

Table III.
Required the amount of an annal instalment of $£ 680 \cdot 2: 3$ to be set aside and accumulated for $1 ;$ years at:; per rent.
(C) By Thoman's Table, ? per cent. Rule :', Chapter VI.

Standard Form, No. Sor.
No. (XIS) 3.

To find the additional sinking fund instalment to eompensate for a reduction in the rate of accumalation. Table Ill.

Rerguired the anmual instahment to be set aside and accumulated at $: 3$ per cent. to provide $£ 50902$ at the end of $1: 3$ years.

$$
\begin{aligned}
& \text { Log. Amomet of loan 5090. } \\
& \text { dedrect Log. amomit of } £ 1 \text { perann. 156178 } 1 \cdot 19: 36196
\end{aligned}
$$

$151: 1152$
Requirel ammal instalment £:

To find the portion of the original loan which will be provided by the accumulation of the amouded ammal increment.

Table III.
Required the amount of an annal increment of $£ 1060454$ to be added to the sinking fund and accumnlated for $1: 3$ years at $?$ per cent.
(B) By Table III, 1: years, ? per cent. Rule 2 , Chapter TI.

Standard Form, No. $3 x$. No. (XIX) \%.

To find the amended amual instalment to repay the balance of loan at the end of the period of repayment. Table III.

Required the annual instalment to be set aside and accumulated at ${ }^{3}$ per cent. to provide $£ 16562 \cdot 26$ at the end of $1: 3$ years.
(C) $13 y$ Thoman's Table, 3 per cent. Rule :', Chapter XIII.

A

To find the amount of loan which will be provided by the future acromulation of the income from the present investments represconting the fund.

Table III.

Required the amount of an annual income of $£ 297 \cdot 984$ to be added to the sinking fund and accumulated for 13 years at 3 per cent.
(:) By 'Thoman's Table, ${ }^{\prime}$ per cont. Rnle 3 , Chapter VI.

$$
\begin{aligned}
& \text { add Log. } \mathrm{K}^{\mathrm{N}}, 13 \text { years, }+10 \quad \ldots \quad \ldots \quad 10 \cdot 1668839 \\
& 12 \cdot 6+10768 \\
& \text { dedurt Log. } \imath^{n} \ldots \quad \frac{8973264 \%}{3 \cdot 6678125} \\
& \text { Required future amount } \pm 4653.85
\end{aligned}
$$

Stemlard Form No. Br.
No. (XX) !.

To find the additional ammal instalment to provide the amount of loan mprovided for owing to a reduetion in the rate of income from the present inrestments. Table III.

Reguired the ammal instabment to be set aside and acommbated at $:$ per cent. to provide $£ \div \pi 56 t$ at the end of 13 years.
(IB) By T'able III, l: yours, ${ }^{\prime}$ per cent. Rule ${ }^{2}$, C'hapter XIII.

Log. Amount of Loan ... deduct Log. amomut of $£ 1$ per amm.	$\begin{aligned} & 55564 \\ & 1561759 \end{aligned}$	$\begin{gathered} 2 \cdot 8896602 \\ 1 \cdot 1936196 \end{gathered}$
		$1 \cdot 6960406$
Required ammual instalment		$£ 49 \cdot 664$

To find the amonnt of loan which will be provided by the accumulation of the future ammal increment. Table IlI.

Required the amount of an ammal increment of $£ 1060+5 t$ to be added to the sinking fund and acemmbated for $1: 3$ yoars at: 3 per cent.
(B) By Table IIT, $1: 3$ years, : per eent. Rule 2 , Chapter VI.

To find the amended ammal instalment comseruent upon a variation in the rate of income upon the present investments, but without any variation in the rate of aceumulation.

Table III.
Required the ammal increment to be added to the sinking fund and accumulated at : p per cent. to provide $£ 16569 \because 20$ at the end of $1: 3$ years.
(C) By Thoman's Table, :' per cent. Rule : ${ }^{\prime}$, Chapter XIII.

Log. Amount of loan 16969.26 4.2191196
add Log. a^{n}, 1 ? years... s.97:
$1: 192: 98: 9$
derluct $\log . \mathrm{R}^{\mathrm{N}}+10 \ldots$...... 10 16688:39
30255000
Required ammal instalment... £1060tit

To find the amount of loan which will be provided by the accumulation of the annual income from the present investments under the altered conditions.

Table III.
Required the amount of an annal income of $£ 297.984$ to be added to the sinking fund and accumulated for 13 years at $2 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $2 \frac{1}{2}$ per cent. Rule 3, Chapter VI.

Log. Ammity $29 \sim \cdot 984 \quad 24241929$
add Log. R ${ }^{\mathrm{N}}, 1:$ years, +10 $10 \cdot 1394103$
$12 \cdot 6136032$
dedurt Log. $a^{n} \ldots$......... 8.9592717
36543315
Required future amount £4511.6094

Standard Form, No. 3.
No. (XXI) 2.

To find the amount of loan which will be provided by the accumulation of the original amual instalment under the altered conditions.

Table III.
Required the amount of an amual instalment of $£ 680 \cdot 234$ to be set aside and accumulated for $1: 3$ years at $2 \frac{1}{2}$ per cent.
(13) B_{y} Table III, 13 years, $2 \frac{1}{2}$ per cent. Rule 2 , Chapter VI.

Log. Amount of $\mathfrak{f l}$ per annum add Log. ammity	$\begin{aligned} & 15 \cdot 140+4 \\ & 68(1 \cdot 234 \end{aligned}$	1•1801380 $2 \cdot 8326581$
		4.012 296\%
Required future amount	\ldots	£10299.038

To find the amount of loan which will be provided by the accumulation of the additional annual instalment inder the altered conditions.

Table III.
Required the amount of an amual instalment of $£: 32592$ to be set aside and accumulated for 13 years at $2 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $2 \frac{1}{2}$ per cent. Rule 3, Chapter VI.

Standard Form, No. Br.
No. (XXI) 4.

To find the ammal instalment required to provide the balance of loan which will be umprovided for owing to a reduction in the rate of acrumulation, etr.

Table ILI.
Required the annual instalment to be set aside and accumulated at $2 \frac{1}{2}$ per cent. to provide $£ 1258 \cdot 15$ at the end of 13 years.

Log. Amount of loan deduct Log. amomit of $\mathfrak{t l}$ yer amm.	15	309975
	$15 \cdot 14044$	1-1801:386
		191959:39
Required amual mstalment...		± 8.0986

Standerd Form, Vo. B.
No. (XXI) 5.

To prove that the amended amual increment as ascertained will complate the final repayment of the loan under the altered conditions.

Table III.
Recuired the amount of an annual increment of $£ 10939909$ to be added to the sinking fund and acemmulated for $1: 3$ years at $2 \frac{1}{2}$ per cent.
(B) By Table III, $1: 3$ years, $2 \frac{1}{2}$ per cent. Rule 2 , Chapter VI. Log. Amoment of $£ 1$ per annum ... $15 \cdot 14044 \quad 1 \cdot 1801386$ add Log. immuity 109\%909 :30:389812
$4 \cong 191198$ Required future amount £16562.26
standard Form, No. 1.
No. (XXIV) 1.

To find the amonnt of lana which will be provided by the future arrumulation of the present inrestments representing the fund.

Table I.
Required the amount of $£ 993{ }^{2}+4$ at the end of 8 rears, accemmulated at $: \frac{1}{2}$ per eent.

ald Log. present sum 99:2.744 3997069:3
$4 \cdot 1165921$

Limpured liture amount £1:30595:

To find the amount of loan which will be provided by the future accumulation of the original amual instalment. Table III.

Required the amount of an amual instament of $£ 680 \cdot 2: 3$ to be set aside and accumulated for 8 years at $3 \frac{1}{2}$ per cent.
(C) By Thoman's Table, $: 3 \frac{1}{2}$ per cent. Rule : ${ }^{\prime}$, Chapter VT.

Standard Form, Mo. 3x. No. (XXIV) 3.

To find the additional ammal instalment to be set aside and added to the fund to compernsate for the reduction in the redemption period.

Table III.
Required the ammal instalment to be set aside and accumulated at $3 \frac{1}{2}$ per cent. to provide $\pm 2 \cdot 58 \cdot 21$ at the end of 8 years.
(C) By Thoman's Table, $3 \frac{1}{2}$ per reut. Rule :3, Chapter XIII.

$$
\begin{aligned}
& \text { add Log. } 4^{n}, 8 \text { years } 9 \cdot 169_{2} 93 ; 2 \\
& \text { 1:30:36206 } \\
& \text { deduct Log. } \mathrm{R}^{\mathrm{N}}+10 \ldots \text {... } 10 \text {. } 11952 \underline{2} \\
& \because 9040998 \\
& \text { Required annual instahment... £s018f: }
\end{aligned}
$$

To find the amount of loan which will be provided by the future accumulation of the present anmal income from inrestments for the unexpired portion of the reparment period.

Table III.
Required the amome of an ammal income of $£ 4 \cdot 648$ to be added to the sinking fund and accumulated for 13 years at $3 \frac{1}{2}$ per cent.
(B) By Table III, 13 years, $: 3 \frac{1}{2}$ per cent. Rule $\mathfrak{2}$, Chapter TI.

Standard Form, No. 3.
To find the amount of loan which will be provided by the future accumulation of the present annual income from investments at the end of the substituted perion of reparment.

Table III.
lieguired the amomot of an anmal income of $£: 3+6 \cdot 648$ to be added to the sinking fund and arcomulated for 8 years at $: 3 \frac{1}{2}$ per cent.

1こ666066:5
dedurl Logr. $a^{n} \ldots$... 9. $16 \div 999{ }^{2}$
$3497869:$

$$
\text { licquited future amount } £ 314681
$$

To find the amount of loan which will be provided at the end of the substituted period of repayment hy the acemmation of the amended annual increment.

Table III.

Required the amomit of an ammal increment of $£ 1802 \cdot 54$ to be added to the sinking fund and accomulated for 8 years at $3 \frac{1}{2}$ per cent.
(B) $13 y$ Table III, 8 years, $3 \frac{1}{2}$ per cent. Rule ${ }^{2}$, Chapter VI.

Standard Form, No. 3. No. (XXYI) 1.

To tind the amount of loan which will be provided by the future accumulation of the present ammal instalment at the end of the substituted period of repayment.

Table III.
Reguired the amount of an annual instalment of $\pm \begin{array}{ll}2 \\ 8 & 0 \\ 6\end{array}$ to be set aside and accumntated for 8 years at $: 3_{2}$ per cent.
(6) By Thoman's T'able, 3_{2}^{1} per cent.. Rule? 'hapter V'1.

add Lug. $R^{\mathrm{N}}, 8$ years, $+10 \ldots$... $10 \cdot 11952{ }^{5}$
12992506.1
deduct Log. $a^{\prime \prime}$... $9 \cdot 1625919 \%$
3809718

To find the additional anmal instalment to be set aside and added to the fund in consequence of a reduction in the period of repayment accompanied by an increase in the rate of accumulation.

Table III.

Required the annual instalment to be set aside and accumulated at $3 \frac{1}{2}$ per cent. to provide $£ 696: \% 19$ at the end of 8 years.
(B) By Table III, 8 years, : $: \frac{1}{2}$ per cent. Rule 2 , Chapter XIII.

Log. Amount of loan deduct Log. amount of $£ 1$ per ann.	696319	38428082
	9.05169	0.9565296
		2-8860786
Required annual instalment..	£\%69\%\%0

Standard Form, No. S. No. (xXVI) 3.

To find the amount of loan which will be provided be the arcumulation of the present amnal increment. Table III.

Required the amount of an ammal increment of $£ 10604$ it to be added to the sinking fund and acemmatated for 8 years at : per cent.

$$
\begin{align*}
& \text { add Logr. ammity } \quad . . \quad \text {... } 10060 \text { Ist }: 30255000 \tag{39745159}
\end{align*}
$$

Required future amount £94:0009

To find the amount of loan which will be provided by the accumulation of the amended annal instalment. Table III.

Required the amount of an annal instalment of $£ 816 \cdots ?$ set aside and accumulated for 8 years at 3 per cent.
(C) By Thoman's Table, :' per cent. Rule :', Chapter VI.

To find the amount by which the annal instalment may be reduced in conseguence of a smphus of loan which will be provided by an excessive ammal instalment. Table Ill.

Required the ammal instalment to be set aside and acrumulated at $: 3$ per cent. to provide $\mathfrak{f l} \mathfrak{2} 604$ at the end of 8 years.
(C) By Thomanis Table, ${ }^{3}$ per cent. Rule :', ('hapter XIII.

$$
11 \cdots 51190: 3
$$

$$
\text { deduct Log. } \mathrm{R}^{\mathrm{N}}+10 \ldots \quad \ldots \quad \ldots \quad 101026978
$$

Standard Form, No. 3.
No. (XXVII) 1.

To find the portion of original loan which will be provided by the future arcumulation of the varying annual income from the present investments, being the first stage in the method by step

Table III.
Required the amount of an anmal income of $£: 34 \cdot 648$ to be added to the sinking fund and accumulated for 8 years at 3 per cent.
(C) By Thoman's Table, ${ }^{3}$ per cont. Rule 3, Chapter VI.

Log. Annuity...	\ldots	\ldots	\ldots	\ldots	$347 \cdot 648$	$2 \cdot 5411397$
$a d d$ Log. R^{N},	8	years, +10	\ldots	\ldots	$10 \cdot 1026978$	

12643:38:575
deduct Log. a^{n}... $9 \cdot 1536819$
34901556
Required future amount $£ 3091$ 40:

To find the arrammated amomet, at the end of the umexpired period, of the amount found in the previous calculation, being the secomd stage in the method by step. Table I.

Required the amount of $\pm: 3091 \cdot 40: 3$ at the eme of 5 years accommatad at :3 per cent.
(6) By Thoman's Table, $:$ per cent. Rule ${ }^{3}$, ('hapter IV.

$$
\begin{aligned}
& \text { Log. 1'uesont sum3091-40:; } 3.4901556 \\
& \text { add Log. } \mathrm{R}^{\mathrm{N}} \text {, j) peat: } 0.0641861 \\
& 3554: 3417
\end{aligned}
$$

To find the portion of original loan which will he provided hy the future accumulation of the reduced ammal income from the present investments during the secoud part of the unexpired repayment period.

Table III.
Required the amount of an annal income of $£ 297 \cdot 984$ to be added to the sinking fund and accumulated for 5 years at 3 per cent.
(C) By Thoman's Table, 3 per cent. Rule 3, Chapter VI.

Log. Ammity.. add Log. R ${ }^{\mathrm{N}}, 5$ years, +10	$297 \cdot 984$	$\begin{gathered} 2.4741929 \\ 10.0641861 \end{gathered}$
dedurt Log. an	$\begin{gathered} 12 \cdot 5383790 \\ 9 \cdot 339162: 3 \end{gathered}$
		31992167
Required future amount	\ldots...	£1582.0:\%

Standard Form, No. Br.
No. (XXVII) \%.
To find the additional amual instalment required in consequence of a reduction in the rate of income from investments during the later years of the unexpired period of repayment.

Table III.
Reguired the annual instalment to be set aside and accumulated at 3 per cent. to provide $£ 26366$ at the end of $1: 3$ years.
(13) By Table III, 1:3 years, 3 per cent. Rule ${ }^{2}$, Chapter XIII.

$$
1 \cong 274411
$$

Required annual instalment... £16.882r

Tor find the equated annual income to be received over the whole of the unexpired perion which is equivalent to the rarying amounts of income to be received during the first and second parts of such period respectively.

Table III.
Required the ammal instalment to be set aside and accumulated at ? per cent. to provide $£ 51658$ in 18 vears.
(C) By Thoman's Table, ? per cent. Rule 3, Chapter XIII.

$$
\begin{array}{r}
\text { Log. Amount of loan } \ldots .
\end{array} \ldots
$$

To find the amome which will be in the fund at the end of the first part of the mexpired period of reparment, being the accumulation of the amended anmal increment during that period.

Table III.
Required the amount of an anmal increment of $£ 10$ ar:35\% to be added to the sinking fund and accummated fors sears at \therefore per cent.
 Log. Amount of $£ 1$ per ammm ... S892:9t 0.9490159 add Lom. amuiity 107T:357 $30032: 3597$ $3981: 3756$

Required future :mount £9580 $\because 2$
'To find the amount of loan which will be provided at the end of the repayment period, being the accumulation during the second part of such period of the amount in the fund at the end of the first part.

Table I.
Reguired the amount of $£ 9580 \sim 20$ at the end of 5 years accumulated at 3 per cent.
(B) By Table I, 5 years, 3 per cent. Rule ${ }^{2}$, Chapter IV.

$$
\begin{aligned}
& \text { Log. Amount of } \ddagger 1 \text {......... 1•159:3 0.0641861 }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \cdot 0455617 \\
& \text { Required future amount £11106.10 }
\end{aligned}
$$

To find the amount of loan which will be provided by the acemmulation of the amended annual increment during the second part of the unexpired repayment period. Table III.

Required the amonnt of an amual increment of $£ 102 \cdot 69: 3$ to be added to the sinking fund and accumulated for 5 years at : s per cent.
(C) By Thoman's Table, ? per ernt. Rule ?, Chapter VI.

Index

INDEX.

Accounting methods. S'e Book-keeping methods.
Accounts. Sep Bank accounts.
investment accounts.
pro forma accounts.
sinking fund accounts.
strsense accomets.
Accomets of Local Authorities, report of Departmental Committee (1907), xii.
Accounts, standard forms of, British, gat works, xii.
electric lighting. xii.
tramways, xii.
Accumulating sinking fund, referred to in all cases as the sinking fund muless term non-accomulating is used, 126 . Sere sinking fund.

Aceummlation, rate of Ser Rate of aceumulation.
Additional burden imposed, on equation, on the final years of the equated period, as regards, the amma! instalment, 110.
interest upon the loan, 412.
the total annual loan charges, 413 .
charts or diagrams, 454-7.
undertaking may have to incur ontlay on renewals, 416.
Adjustment, causes of, 7,146 .
Aljustment, methods of, 8, 17.
anmal increment (balance of loan) method, $8,152,260$.
annual increment (ratio) methool, 9, 151, 263, 279.
deductive methot, 224 .
direct method, 237 .
statement shewing full details of cach adjustment will be found at the end of each chapter, 8 .
summary of methods will be found at the head of each chapter, 8 .
Advantage of method by formula, 159.
Advantage of use of lograthms, 3, 21 .
Algebraical formules. Sire Formula.
Algebraical theory of indices, and its relation to logarithms, 24.
Alternative nature of the methods of mpayment in Section 234 of the Public Health Act, 1875. 6, 109, 110.
Amended amnual increment. See Annual increment.
Amended anmal instalment. Ser Ammal instalment.
American experts to the National Givic Feteration of New York, 1906, xi.
American readers, to, ix.
Amount, as used in published tables, must not be confounded with a sum of money; a better term would be "accumulated amonnt" or "aceumnlate," 31.

Amount due at the end of any number of years: to provide the same by an anmual sum or annuity to be accumulated at compound interest, 126.

Amount in the sinking fund, deficiency, 154, 171.
surplus, 186, 199.
investments, present, 147.
Amount of an annuity. Sec Amount of one pound per annum.
Amount of one pound, the, in any number of years, arithmetical method, 37, 38 . derivation of formulee : mathematical, 29, 38.

Thoman's, 77.
formula : mathematical, 36 .
Thoman's method, 77.
Inwood's table, No. 1, 36.
logarithmic methods of calculation, 36 .
rate per cent. per annum, to find, 89.
ditto, standard calculation form, 89.
rules for calculations : by formula, rule 1, 36.
by published tables of compound interest, rule 2,36 .
by Thoman's method, rule $3,37$.
standard calculation form, author's, No. 1, 40, 41, 88.
years number of, to find, 89.
ditto, standard calculation form, 89.
Amount of one pound per annum, in any nmmber of years, arithmetical method, 54-56.
derivation of formule : mathematical, 55.
Thoman's, 77.
formule: mathematical, 50 .
Thoman's method, 73, 77.
Inwood's table, No. 3, 50.
logarithmic methods of calculation, 50 .
rate per cent, per annum, to find, 94 .
ditto, standard calculation form, 94.
rules for calculations: by formula, rule $1,51$.
by published tables of compound interest, rule 2, 51.
by Thoman's method, rule 3,51 .
standard calculation form, author's, No. 3, 60, 61, 93.
years, number of, to find, 94.
ditto, standard calculation form, 94.
Amount of one pound, and of one pound per annoum at end of one year, comparison, 33.

Annual charges to revenue or rate, under the annuity method, 122.
instalment method. 113.
siuking fund methods, the accumulating fund, 139.
the non-accumulating fund, 137.
comparison under all methods, 140 .
Ammal incidence of taxation. S'e Equation of the period. Ser Incidence of taxation.

Annal income from investments. Ner Income from investments.

Annual increment, advantages of methods, 149.
amended annual increment, definition of, 260 .
balance of loan method, 152, 260.
definition of terms, 151, 175, 260.
future annual increment, definition of, 260 .
methods, 8, 262.
present amual increment, definition of, 260 .
problems, 259.
ratio method, 9, 151, 263.
variation in rate of income included in adjustment, 150.
Ammual increment (balance of loan) method, compared with application of part of fund in redemption of debt, 153, 175.
definition of terms, 260.
description of, 152.
rates of income and accumulation must be uniform during whole of repayment period, 175.
summary of method, 261.
under this method amount in fund may vary from proper calculated amount, 205.
Ammal increment (ratio) method, assumed that the fund stands at the proper calculated amount as shewn by the pro forma account, 227 .
definition of terms, 260, 281.
description of method, 151, 263.
principles of method, 259, 279, 311.
rate of income from investments, merged in annual increment, 278.
will apply equally to an increase or reduction, $282,299$.
rate of accumulation only : summary of method, 277 .
rule, 277.
derivation of rule and formula, 278.
formula, 281.
pro forma account, 235.
method described, 279.
period of repayment only : summary of method, 283.
rule, 295.
derivation of rule and formula, 296 .
formula, 299.
pro forma account, 294.
method described, 296.
rate of accumulation and period of repayment in combination : summary of method, 300.
rule, 301.
derivation of rule and formula, 304 .
formula, 306, 307.
pro forma account, 321.
method described, 303.
proof of method, 307.
Annual instalment, equal, of principal and interest combined : an of Thoman gives \log values of, 118.
annuity method of repayment, 114.
annuity which one pound will purchase, 67.

Anmual instalneent, equal, of principal and interest combined : apportionment between capital and income, 122, 133.
compared with sinking fund instalment, 118 .
formule, 67 .
hire purchase system. 111.
method of calculating, I15.
number of years, to tind, 104
ditto, standard ealculation form. 105.
rate per cent.. to tind, 105.
ditto, standard calculation form, 105.
relation to sinking fund instalment, 118.
repayment of hoan by the ammity method, 120,122 .
rules. 114, 115.
standard calculation form, No. 5, 103.
statement shewing final repayment of loan. 123 .
'Thoman's method, 67, 68.
Annual instalment of the sinking fund : amended ammal instahment, definition of, 261.
apportionment of, in respect of loan borrowed for part only of tirst year, 365.
before and atter equation of the period, 15, t1s.
compared with equal ammal instahment of principal and interest combined, 118.
formulie, 126, 127.
functions of annual instalment. 417 .
future annual instalment, detinition of, 261 .
method of calculating, 131.
number of years, to find, 97 .
ditto, standard calculation form, 97 .
present ammal instalment, detinition of. 261 .
problems relating to the, 145 .
pro forma accome of the normal accomutation of the fund. 165 .
rate per cent., to find, 98.
ditto, standard calculation form, 95 .
relation to equal ammal instalment of principal and interest combined, 118. rules, 127 .
standand calculation form, No. 3x. 96.
Ammal instalment of the sinking fumb, after equation : spread equally orer the equated period withont any regard to the life of the asset, 14, 409.
should be spred over the equated period in proportion to the life of the asset. It, 416.
When it may be eonsidered the equivalent of depretiation, 415 .
Ammal instalment of the sinking fund, before equation : spread ower the period in proportion to the life of the asset, 11, 37 s .
Ammal instalment of the sinking fund. inst. Sie First ammal instalment.
Ammal sum, formula relating to, 2,50 .
Ammities set aside at end of year, 33.
Anmitese tables relating to : amoment of 50.
present value of, 62.
purchased with one pound, 67.

Annuities or other periodic payments, 51.
cannot be considered a pure geometrical progression, 52 .
Annuity, amount of. See Amount of one pound per annum.
Annuity method of repayment, 114.
advantages and disadvantages, 115.
ammal incidence of taxation, 122.
amual charges to revenue or rate compared with instalment and sinking fund methods, 140.
apportionment of ammal instalment as between principal and interest, 122, 133.
commercial form, hire purchase system, 111.
instalment method compared, 115, 121 .
loanholder may out of equal annual instahment of principal and interest combined, provide a sinking fund for redemption of his capital. 115, 133.
relation between the equal annual instalment and the sinking fund instalment, 118.
sinking fund methods compared, 133.
table shewing the operation of the method and the annual incidence of taxation, 122.
Annuity of which one pound is the present value. See Annuity which one pound will purchase.
may be found by Thoman's factor $\mathrm{an}^{\mathrm{m},} 118$.
Annuity, present value of. Sere Present value of one pound per annmm.
Annuity which one pound will purchase, the; or of which one pound is the present value : amuity method of repayment, relation to, 69.
derivation of formule : mathematical, 69.
Thoman's, 76.
equal annual instalment of principal and interest combined, relation to, 69. formule: mathematical, 67, 68.

Thonran's method, 73, 76.
Inwood's table, No. v, 67.
logarithmic methods of calculation, 67, 68.
rate per cent. per annum to ind, 105.
ditto, standard calculation form, 105.
rules for calculations: by formula, rule 1,68 . by published tables of compound interest, rule 2, 68 . by Thoman's method, rule 3, 68.
standard calculation form, author's, No. 5, 71, 72, 103.
Thoman's \log factor $\mathrm{un}, 76$.
years, number of, to find, 104 . ditto, standard calculation form 104 .

Antilogarithm, 26.
Appendix, calculations, after Chapter xv, 459.
Application of sinking fund, in repayment of loans or redemption of stock. See loans repaid ont of the sinking fund.
Apportionment : annual instalment or rent, methot of finding apportioned part, 29.

Apportionment : as between capital and income of equal annual instalment of principal and interest combined, 122, 133.
effect of apportioning sinking fund instalment during year of borrowing, 365.
equal annual instalment of principal and interest combined, 122, 133.
method of finding any number of days proportion of an annual instalment or of an annual rent, 29.
of bank interest between several sinking funds, 352 .
ditto, method of avoiding when only one bank account is kept, 352 .
of income from investments as between several sinking funds, 352 .
method of avoiding, ete., 352 .
of part of instalment to be charged against year of borrowing, may be advisable in case of large loans, $10,366$.
ditto, is generally ignored in case of small loans, 10. 365 .
sinking fund instalment, method of tinding apportioned part, 29.
Appreciation of assets, 381.
Arithmetical method of finding : equated annual income, 334.
error in method, 335.
example, 334.
pro forma account, 341.
period of repayment, $360,392,404$.
error in method, $397,405$.
examples, 392, 404.
may be preferred on equation as it extends period, 393. 402, 439.
proportionate part of annual instalment, 368 .
Arithmetical progression : definition of, 22.
relation to geometrical progression, 22.
Assessment or local rate in (ireat Britain : levied on annual and not cupital value, xiii.
charged with any deficiency of loan charges not provided by profits of trading departments, xv.

Asset : after equation of period, redemption charges should be governed by life of, $416,439$.
appreciation of, 381 .
depreciation of, $346,385,415$.
lite of, and its relation to the redemption period, 11, 37.
life of, generally ignored in fixing total redemption charges after equation of period, 416 .
ditto, should govern total redemption charges after equation of period, 416.
obsolescence, 346, 385.
proceeds of sale of, 186,189 .
supersession, 346,385 .
wastage of. Sec Depreciation.
Author's standard calenlation forms. S'e Calculation forms.
Batance of lom method of adjastment, and the annuat increment, summary of, 152, 261.

Balance sheet, standard forms of, xii.

Bank accounts : only one aceount required for the whole of the sinking funds of each department of the local tuthority, 351. see Book-keeping methods.

Bank, gain by, on discount of bills, 34 .
Bank interest, apportionment of, between several sinking funds where only one bank account kept, 352.
apportiomment of, to avoid, 352 .
Bankrupt or insolvent community, 353 .
Bills, discount on : difference between practical discount and true or mathematical discount, 34.
published tables of present values will not apply, 35.
Book-keeping methods: bank accounts, number oi, 351.
bank interest, apportionment of, 352. ditto, to avoid, 352.
commercial undertakings, 160.
deficiency to be adjusted anmually by revenue or rate accomit, 352
equated loan interest reserve account, 445 .
income from investments, apportionment of, 352. ditto, to avoid, 352.
interest on loan after equation, reserve account, 445. pro forma account, 447.
interest (sinking fund) suspense account, 35?.
investment accounts, number of, 351.
loans redeemed out of sinking iund, interest to be added to the fund, $1 \because 9$. foans redeemed out of sinking fund, should be treated as investments, and not debited to the sinking fund, 351.
non-accumulating sinking fund, 138.
number of sinking fimds required: loans repayable at various dates, 349. objections to keeping only one account, 350 .
stock redeemable on one date, 362.
pro forma accounts, preparation of, 5. sce pro forma accounts. should be kept in a separate book and not in the current ledger, 5 .
separate sinking funds required, 362 .
ditto, not required, $353,363$.
simplified on consolidation of loans, 414.
sinking fund interest suspense account, 138.
sinking fonds should be earmarked, 350 .
verification of calculations, by alternative method of proof, 18.
Borrowing : construction period, extended borrowing during, 347, 356, 391.
each year's borrowings treated as separate loan with separate sinking fund, 348.
first year of, and proportion of ammal instalment, 365.
general practice, 345 .
in advance of requirements, results of, 317 .
may be complicated by variation in life of asset, 346 .
relation between date of borrowing and redemption period, 345 .
loan relating to outlay of one character only, borrowed over several years, in one sum in each year, each year's borrowing being repayable in prescribed period from date of borrowing, 345.

Borrowing : example to illustrate, 345.
particulars of loan. 349 .
alternative methods of keeping sinking funds: one fund with increas. ing instalment. 349 .
objection to method, 350.
separate fund for each year's borrowings, 350 .
each fund should be earmarked, with department, date of sanction and loan, and period allowed, 350.
bank account, only one required, 351 .
investment account, only one required, 351.
book-keeping methods, 352 .
loan relating to outlay of one character only, borrowed over several years, in one sum in each year, repayable in one sum on a specified date. Where date of repayment is known at the time money borrowed, 354.
summary of methods, 354.
how it may arise, 356 .
example to illustrate, 357.
particulars of loan, 358 .
one sinking fund only required, 358 .
increasing annual instalments, 358.
final repayment of loan, 359.
loan relating to outlay of one character only. borrowed over several years, in one sum in each year, repayable in one sum on a specified date, fixed after fund has been in operation a number of years, 359 .
summary of methods, 355.
consolidation of existing loans, 356 .
temporary instalments during construction, 357.
equation of period of repayment, 360 .
example to illustrate, 360 .
particalars of loan, 361.
sinking funds required, 362,363
proof of method, 364.
loan relating to outlay of one character only, borrowed at varions dates in one or more years, and it is required that the revenue or rate account of each year shall be charged with a proportionate part of the annual instalment.
adjustment not required in case of small loans, 365,367 .
may be necessary in case of large loans, 366.
method of adjustment, 367 .
example to illustrate, 367 .
arithmetical method of finding propertionate part of year, 368 .
proof of method, 372.
comparison with instalments when adjustment not made. 373.
effect of adjustment, 374.
Buildings, outlay mon, 350 .

Burden. See additiomal burden.
Sope earlies yoars of the equated period.
siere fimal years of the equated period.
See post equated period.

Calculations, are numbered to shew, in boht type, the chapter to which they relate.
on author's standard forms are given at the end of each chapter.
after Chapter xv are given in appendix only, 459.
should in all cases be verified by an alternative method of proof, 5, 17.
for periods other than years, 44, s1.
calculations other than on standard forms, 83,84 .
method by step, 183, 338, 429.
Calculation forms, author's standard, 4, 73.
advantage of, 81 .
three methods on each form, 82 .
amount of one pound, No. 1, 40, 41, ss.
ealculations mate on form, nature of, 87 .
rate per cent., to find, 89.
number of years, to timd, 89.
amount of one potmd per ammm, or ammity, No. 3, 60, 61, 93. calculations made on form, nature of, 92 . rate per cent., to find, 94. number of years, to tind, 94.
annuity method of repayment, No. 5, 103.
rate per cent., to find, 105.
number of years, to tind, 104 .
ammity which one pound will purchase, No. 5, 103.
calculations mate on form, nature of, 102 .
rate per cent., to find, 105 .
number of years, to tind. 104.
present value of one pound, No. 2, 91.
calculations made on form, nature of, 90 .
rate per cent., to find, 89 .
number of years, to find, 89.
present value of one pomed per ammom, or ammity, No. 4, 65, 66, 99. calculations made on form, nature of, 98. rate per cent., to find, 101. number of years, to find, 100.
rules for calculations. Ser Inter.
sinking fund method of repayment, No. 3x, 96. calculations made on form, nature of, 95. rate per cent., to tind. 98. number of years, to find, 97.
special calcnlation forms. list of, 83.
Calculation of a typical fund, 158.
Calculations, rules for. Sure Rules for catculations.
Capital of communities, consists of power to levy a rate, 377 .
Causes of adjustment, 7, 146.
Causes of an equation of the period, 13, 413.
Cessation of annual contributions, 221.
Characteristic, the integral part of a logarithm, 25, 26.
negative, 26.
ditto, to divide or multiply a \log with a, 26 .

Charges, ammal, to revenue or rate, under instalment method, 113.
amnuity method, 122.
sinking fund methods, accumulating sinking fund, 139. non-aecumulating sinking fund, 137.
comparison under all methods, 140 .
Charts, or diagrams, 454-457.
Clauses, model, of the Local Goremment Board, 6, 110 .
Commercial and tinancial, or private undertakings: ammal instalment not always a charge upon profits, 191.
auditors and position of fund, 161.
book-keeping, simking fund, methods, 160.
conditions as to repayment much more elastic than local authorities, 285.
conversion of loan debt into ordinary share capital or stock, 199, 203.
deferred payment system, 111.
deficiency in the sinking fund, 160 .
general practice as to sinking funds, 109.
hire purchase system, 111.
incorporation of, xiv.
investment of fund in outside securities, 147, 160 .
limited liability, xiv.
loan debt of, xiv.
loan repayment and depreciation kept distinct, 415.
methods of tixing annual instalment to sinking finnd: by calculation, 203. by a fixed anmual sum, 203.
methods of repayment, 109.
outside investment, if not required, transactions are book entries only, 160.
parliamentary companies, xiv.
period of repayment, variation in, 285.
proceeds of sale of assets paid into fund, compared with local authorities, 189.
redemption by drawings, 220 .
repayment of loans distinct from depreciation, 415.
reserve funds unlimited in amount, 385, 415.
share capital or stock, methods of raising, xiv.
sinking funds compared with those of local anthorities, 202.
sinking fund not always specifically invested, 160.
surplus in fund and how corrected, 199.
surplus in fund arising on conversion of loan into ordinary share capital or
stock: where original instalment found by calculation, 204.
where original instahment a stated sum, 210.
unlimited liability, xiv.
withdrawal of part of loan from operation of fund, 203.
Committee on Luvestigation, National Civic Federation of New York, ix.
Companies or corporations in (ireat Britain, xiii.
Comparison of : amounts and present valnes of one pound and of one pound per annmm at end of one year, 33 .
ammal charges to revme or mate mader all methods of repayment, 140.
annual instalments under ammity and sinking fund methods, 118.

Comparison of : arithmetical and mathematical methods of finding the equated date of repayment. 392, 397.
depreciation and the sinking fund instalment. 385, 415.
local authorities and private undertakings, conditions imposed as to repayment of loan debt, 109.
incidence of taxation before and after the equation of the period of repayment, 413.
instalment method and non-accumulating sinking fund method. 135.
Compound interest, applied to:
a sum of money : amount of one pound, 36 . present value of one pound, 42.
an annual or other periodic payment : amount of one pound per annum, 50. present value of one pound per anmum, 62.
annuity which one pound will purchase or of which one pound is the present value, 67.
derivation of formula relating to, 29.
formula, relating to a sum of money. \because. ditto, an annual sum, 2.
geometrical progression, a, 29. ditto, algebraical formula for. 30.
mathematical formula derived from algehraical formula for geometrical progression, 31.
symbols. explanation of, 30, 84 .
tables of. varieties. 3 .
Thoman's tables, 3 .
Thoman's method and formule are stated at the head of the Chapter relating to each Table and also in Chapter ix.
Compound interest, published tables of. Sre Tables of compound interest.
Consolidation of existing loans, additional burden on final years of equated period, 410. 412, 413.
advantages of. 413.
amount in the sinking funds, 13, 361.
cause of an equation of the period of repayment, 11.
claim that it resulted in an immediate saving in rates. $17,452$.
effect on different departments of local anthority, 11.
equitable method of adjusting the ammal incidence of taxation atter consolidation, 409. 418, 436.
incidence of taxation, annual. effect uron, 434, 449. ditto, previons to consolidation should not be varied, 43.5.
incidence of loan charges on different departments of the local authority should not be varied on consolidation. 11.
increased burden upon final years of equated period, after consolidation. 449.
interest upon the loan before and after consolidation, 412.
loanholder, consent of, 12.
method of ascertaining the equated date. 359.
powers of Local Covernment Board, 285.
relief to early years of equated period, 413 .
ditto, post-equated period, 413 .
sinking fund instalment before and after consolidation. 410.
total anmal loan charges before and after consolidation, 413.

Consols, variation in the rate of interest on. 225,327 .
Construction period, and its relation to the sinking fund instalment, 347, 356 . adjustment of fund required when works completed. 356. 391.
estimated amounts only can be set aside during construction. 391.
matter complicated when works include portions with varying periods of continuing utility, with varying periods of repayment, 346 . See Temporary instalments.

Continuation of annual instalments, 292.
Continuing utility. Sier Asset. Life of asset.
Conversion of part of loan debt of a private undertaking into share capital or stock. and its effect upon the sinking fund. 199.

Corporations in Great Britain. include local authorities and private undertakings, xiii.
Correct method of distributing annual burden after equation of period. 427, 436. 449 .

Correction of a deficiency in the sinking fund of a local anthority or private undertaking : by additional annual instalment spread equally over whole of umexpired portion of repayment period. 173.
by additional ammal instalment spread over earlier part only of mexpired portion of repayment period. 179.
by an immediate parment into the fund, 162 .
Correction of a surplus in the sinking fund : of a local authority, 186. of a private undertaking, 199.

Costs of obtaining powers: effect of equation of period to extend repayment to fall term, 15.
periods allowed for repayment generally short, 129 .
Dates of borrowing : in one sum in each year. over several years, each yearly amount being repayable orer a similar period, 345 .
ditto, the whole loan being repayable in one sum on a specified date. 354.
in several sums in one year. and it is required to charge the revenue or rate account of the year of borrowing with an apportioned part of one year's annual instalment, 365.
may be complicated by a variation in the life of the asset, 346 . apportionment of annual instalment in year of borrowing. 365 .
relation between date of horrowing and the redemption period, 345 .
sinking fund, loan generally treated as being borrowed at end of tinancial year and full annual instalment set axide at end of following year, 365. Sire also Construction period.

Date of repayment, $10,245,345,354$.
Deductive method of adjustment, 224, 283.
Deferred payment system, a commercial form of the instalment method of repayment, 111.
Deferred sinking fund, 391.

Deficieney in the fund : canses, $7,154,161$.
compared with method of adjusting a smptus, 193, 219.
depreciation in value of investments, 161.
if small in amount should be corrected annually, 146 .
income from investments, decreas in, 161.
methods of adjustment, summary of, 155.
methods will apply to a suphlus, 226.
methods of correcting, 161.
by payment of deficiency into fund, 16 .
by additional instalment spread over whole of unexpired period, 162.
summary of method, 171.
method described, 173.
pro forma aecount. 178.
by additional instalment spread over early years only of unexpired period, 162.
summary of method, 172.
method deseribed, 179.
pro forma account. 185.
Stock Regulations, County, 1891, Art. 11 (2). 161.
Departments of local authority : one investment account and one bank account only required for each, 351.
should be kept distinct on consolidation of loans, 11.
Departmental committee on the accounts of local authorities, report dated 1907, xii.

Depreciation of assets : and its relation to the sinking fund instalment, 346. may be considered as provided by the annual instalment when the period of repayment is lixed with regard to the life of the asset, 385, 415.
should be charged asainst revenue or rate account when total loan has been repaid by means of the sinking fund. 356.
Derivation of formule and rules (annual increment (ratio) method) : rate of accumulation, variation in, 277.
period of redemption, variation in, 295.
rate of accumulation and period of redemption in combination, variation in, 301.

Derivation of formule (mathematical methods) : amount of one pound, 36.
amount of one pound per annum, 50.
amuity method of repayment, 114 .
annuity which one pound will purchase or of whith one pound is the present value, 67.
equal annual instalment of principal and interest combined, 67 .
present value of one pound. 42.
present value of one pound per annum, 62 .
sinking fund method of repayment, 126.
Diagrams or charts, shewing incidence of taxation before and after the equation of the period, 454-457.
Difference between the amounts of $£ 1$ and of $£ 1$ per annum at the end of one year, 33 .
Direet method of adjustment, 237.

INDEX

Discount, mathematical or true, compared with practical discount, 34, 35.
Discount on bills, compared with mathematical or true discount, 34 .
Discount practical, published tables of present values will not apply, 35 .
Division, by logarithms, 23, 24.
Drawings, redemption of loans by, in case of commercial and financial undertakings, 220.
Duration of continuing utility, or the life of the asset and its relation to the redemption period and the incidence of taxation, 111, 377, 389.
main factor in fixing the original period of repayment of the loan, 378, 390, 413.
Local Government Board, powers of, as to determining the period, 111, 390. ignored generally when fixing the equated period of repayment of loans in respect of outlays of varying nature; and also on consolidation of existing loans, 416.
Earlier years of the equated period : relief, on equation, annual instalment only, $410,449$.
interest on loan, unaltered on equation, 412, 449.
total annual loan charges, 413, 449.
corresponding burden on final years of equated period, 413.
Early provisions as to repayment of local loans, 109, 379.
Effect of the generally adopted method after equation as regards : the annual instalment, 15, 410, 418. Chart I, 454-5.
the interest on the loan, 16, 412, 436. Chart I, 454-5.
the total annual loan charges, 16, 413, 449. Charts II and III, 456-7.
the incidence of taxation, $15,16,409$.
saving in anmual rates claimed on equation, 17, 452.
loans in respect of ontlay having a short life, not repaid by the time the asset is worn out, 420.
reborrowing in respect of assets having a short life, 15, 420.
Electric lighting modertakings : standard forms of account, xii.
wide divergence in charge by different mmicipalities, 383. See also Revenue earning undertakings.
Enquiry into the monicipal and private ownership and operation of public utilitics in Great Britain ; by the National Civic Federation of New York (1906), ix.

Equal annual instalment of principal and interest combined : may be found by Thoman's factor an, 89.
See Annuity which one pound will purchase. 67.
Equated annual income from investments, 330 .
arithmetical method of linding, 334.
error in method, 335.
pro forma accoment, 3.11.
Equated date, method of ascertaining, adopted by Local Government Board, 402, 403.
generally fixed by methol known as the equation of payments, 392, 404. error in method, 397, 405.
true or mathematical methond described, 391, 399, 404.

Equated loan interest, reserve account, after equation of period, 445 . pro forma account, 447.

Equated period : necessity to fix, how arising, 13, 359.
arithmetical method or the equation of payments, 14, 334, 392, 104.
arithmetical method gives longer period, 402.
true or mathematical method, 394, 404.
summary of method, 399.
on the consolidation of loans, 389 .
for repayment of loans, raised by the issue of stock, in respect of ontlay upon works having varying periods of continning utility. 390 .
relief to early years on equation of period in respect of the : anmal instalment. 15. 410, 449.
interest on the loan, 412, 449 .
total annual loan charges, 413, 449.
charts or diagrams, 454-457.
further borrowing powers after equation, 420.
additional burden imposed atter equation of period upon the final years of the equated period in respect of the : anmual instament, 15,410 , 449.
interest on the loan, 16, 412, 449.
total annual loan charges, 413, 449.
charts or diagrams, 454-7.
number of years in period depends mon amount of loan and respective repayment periods. 405.
See Earlier years of equated period.
Equation, method of : as generally adopted, 14. 410.
effect of, 15, 413.
true or mathematical method, $394,399,404$.
Equation of payments, the arithmetical method in general use for finding the equated date, $14,331,392,404$.

Equation of the incidence of taxation : before equation the ammal instalment
and interest on the loan are borne by future years in proportion to the life of the asset, 438 .
after equation, life of asset generally ignored, 434.
the unequal incidence of taxation if the amual instalment and interest on the loan are spread equally over the equated period without any regard to the life of the asset, 409.
remedy as to the annual instalment, 15, 431.
ditto, interest on the loan, 16,443 .
method of continuing the original ammal instalments during the equated period, and spreading the supplementary annual instalment, representing the relief to the post-equated period, equally over the equated period, 15, 16, 424.
method of spreading the burden over the equated period strictly in proportion to the life of the asset hefore equation, 16 .
the annual instalment, 431.
the interest on the loan, 443 .
the total anneal loan charges, 449.
claim to reduce rates on consolidation, 17, 452.

Equation of the incidence of taxation : cannot be made by reducing each period in proportion to the reduction in the final period, 419 .
difference between financial obligation to repay loan, and the charge to revente or rate based upon life of asset, 419.
charts, 454-457.
Equation of the period of repayment : and the life of the asset, 11, 389 .
and the incidence of taxation, $15,409$.
on the consolidation of existing loans, 391.
claim to reduce rates on consolidation. 17, 452.
in respect of a loan authorised for outlays having varying periods of continuing utility and consequent repayment. 309.
and effect in case of renewals, 416 .
postponed repayment of loans in respect of outlay having a life shorter than the repayment period, $15,420$.
canses giving rise to equation. 13,413 .
life of asset enters into calculation on equation but effect lost by equal ammal instalment, 424.
a financial operation only. 409. $41 \overline{5}$.
effect of equation, 409, 411, 434.
Evolution by logarithms, 24.
Expenses of sinking fund, 129.
Final years of the equated period. Sir Additional burden. on equation, and Equation of the incidence of taxation.
Final repayment of the loan. s. Sire Statements which will be found at the end of each chapter dealing with an adjustment in a sinking fund. See also the several pro forma accounts.

Finance Act. 1888, 225. 32-
Financial details of undertaking: in Crat Britain examined by the Committee of Investigation of the National Civic Federation of New York in 1906, x.
Financial nature of the equation of the period, 415, 453.
Financial undertakings. .or Commercial undertakinge.
First annal instalment to sinking fund : method of ascertaining the proportionate part of the ammal instalment in respect of mones: borrowed for part of a year to be charged against the rate or revenue account of the year of borrowing, 365 .
usmally set aside at the end of the tirst eomplete year and no eharge mate against the gear in which the loan is borrowed, 365 .

Forms of accounts. Sire Accounts.
Forms for ealenlations, author's standard, these forms are fully described and explained in Chapter x.

Formole (ammad increment ratio method) : rate of accumation. variation in, 281.
period of redemption, variation in, 299.
rate of acrumbation and period of redemption in combination. variation in, 307.

Formula : advantages of method by, 3, 158.
amnuities or other periodic payments, 50 .
geometrical progression, 2, 30.
compound interest, 2,31 .
simple interest, 28.
differ from those in actuarial works, 3 .
Formule (mathematical methods) : amount of one pound, 36.
amount of one pound per annum. 50.
annuity methol of repayment, 67, 114.
ammity which one pound will purchase or of which one pound is the present value, 67, 68.
equal annual instalment, of principal and interest combined, 67, 68.
present value of one pound, 42.
present value of one pound per amnum, 62.
sinking fund method of repayment, 127.
derivation of. See derivation of formule.
Future amount, present value of. S'e Present value of one pound.
Future annual income from investments, definition of, 260. Sce Income from investments.

Future annual increment, definition of, 260.
Future annual instalment, definition of, 261.
Future generations, liability to provide further utilities. $378,384$. safeguards to, 14, 378, 384, 410, 412, 413.

Future rate of accumulation, definition of, 260.
Gas works, profits from, applied in aid of rates, 383.
wide divergence of charges by different municipalities, 383 .
standard forms of account, xii.
See also under Revenue earning undertakings.
Geometrical progression : algebraical formula for, 2, 30 .
basis of fcrmala relating to compotud interest, 2, 30 .
definition of, 22, 30 .
derivation of fermula relating to compound interest, 30, 31.
example of, 22 . relation to logarithms, 22.

Goschen (Finance Act, 1888), 225, 327.
Hire purchase system, a commercial form of the amnuity method of repayment, 111.

Incidence of loan charges on different departments of a local authority, on consolidation of loans, 11.
Incidence of taxation. See Ratepayer.
Incidence of taxation. equation of the. Sre Equation of the incidence of taxation.

Incidence, annual, of taxation, under various methods of repayment : instalment method, 113.
annuity method, 122 .
sinking fund methods: the accumulating fund, 139.
the non-accumulating fund, 137.
comparison under all methods, 140.
Income from investments : consols, variation in the rate of interest on, 225, 327.
future annual income, detinition of, $149,260$.
present annual income, definition of, 260.
non-accumulating sinking fund, 135.
rate of, variation in : uniform during whole of period, 236 .
not, ditto, 322 .
See also Variations.
Increment, annual, 148. See Anmual increment.
Indices, algebraical theory of, 24.
Injustice to ratepayers, of final years of equated period. See Additional burden, ratepayer.

Instalment, equal anmual, of principal and interest combined, may be found by Thoman's factor an, 118. See Annual instalment, equal, of principal and interest combined.

Instalment method of repayment, 109.
ammal incidence of taxation, under this method, 113.
annual charges, to revenue or rate, compared with : annuity method, 115, 121.
sinking fund methods, 128 .
commercial form, the deferred payment system, 111 .
decreasing annual charge to revenue or rate, 112.
insurance companies, 111.
loanholder, frequent reinvestment by, 112.
Public Works Loan Commissioners, 111.
no accumulating sinking fund, 113.
relation to the non-accumulating sinking fund method, 135.
statement shewing the operation of the method and the annual incidence of taxation, 113.
Instalment, annual, to sinking fund, problems, 145.
Interest : compound, a geometrical progression, 29.
simple, an arithmetical progression, 28.
Interest, bank. Spe Bank interest.
Interest from investments. Ser Income from investments.
Interest of one pound, for one year, 45, 52.
basis of finding the formula relating to the accumulation of an anmal or other periodic sum, 52.
Symbol r, 32, 85.
values and corresponding logs for 49 rates per cent., from $\frac{1}{4}$ per cent. to 7 per cent., Tioble V, A, Chapter V, 48, 49.

Interest suspense account, sinking fund, method of keeping, relating to one bank account, and one investmont account for several sinking funds, 352.

Interest upon the loan : after repayment of loan out of the accumulating simking fund to be added to the fund, in whole or in part, 129.
amuity method, apportionment of equal anmual instalment as between principal and interest, 122.
annuity method, decreasing annual amount of interest included in the equal annual instalment repaid to the lender, 115.
annuity method, loanholder may provide a sinking fund to equalise his annual interest, 133.
charge to revenue or rate account, under all methods of repayment, 140 .
before and after consolidation, $412,436$.
before and after equation of period, 412, 436 .
effect of the equation of the period, 416 .
cousent of loanholder, on consolidation, 12.
instalment method, decreasing annual amount of interest paid to the lender, 112, 113.
need not be added to non-accumulating fund after repayment of loans, 137. the incidence of taxation, 416,436 .
reserve account, to equalise the incidence of taxation after the equation of the period of repayment, pro forma account, 447 .
book-keepmg methods, 445 .
sinking fund method, constant amual amount of interest paid to the lender, 129.
variation in the incidence of taxation after the equation of the period of repayment, 436 .

Introduction, 1.
Investment accounts : only one investment account required for the whole of the sinking funds of each department of a local authority, 351.
should be raised in the ledger for all loans repaid or redeemed out of the sinking fund, 35l. See also Book-keeping methods.
Investment of the sinking fund in loans of the same local authority, 130.
Investments representing the sinking fund and the income arising therefrom. See Income from investments.
Investments, value of, an important factor in any adjustment of a sinking fund, 147.
Investments, rate of income from. See Rate of income from investments.
Involution, by logarithms, 24 .
Inwood's tables, of compound interest, etc., new edition by Schooling, 3.
Irredeemable stock, 12.
Irregular contributions to the sinking fund in earlier years. See Construction period. See Temporary instalments to the sinking fund.

Land, appreciation in value, 352 .
acquisition by way of lease, 380 .
period allowed for repayment of loan, 380 .
Law relating to the repayment of the loan debt of local authorities, is not included in this book except so far as it relates to the actual methods of repayment, 1 .

Leasehold properties, outlay upon, by local anthorities, 380.
Life, or duration of continuing utility, of the asset created out of the loan, 11 . and its relation to the redemption period, 372.
after the equation of the period of repayment, 416,439 .
see also Assets.
Limitation of the period of repayment, in the case of works of almost permanent utility, 14.

Limited Liability Acts (Great Britain), xiv.
Loan charges, ammal, charged against protits of trading departments: any deticiency made good out of ammal rates or assessments, xr.
Loan debt of local authorities, how raised : mortgages for short terms, 414.
stock, 390.
security for, 383 .
Loan debt of local authorities, how repayable : by instalment method, 109.
by ammity method, 114 .
by sinking fund methods, 126 .
at end of short periods, mortgages, 414.
on a specified date (stocks), 390.
out of the sinking fund, 129.
see reborrowing.
Loan debt of private motertakings, how repayable. See Loan debt of local anthorities, commercial undertakings.

Loan, final repayment of se statements shewing, ete., pro forma accounts.
Lomholder : and the equation of the period of repayment, 414.
annuity method, difficulty in ascertaining the amount of principal included in each amnual instalment, 115.
ditto, effect of ammal repayments, 115 .
may provide a sinking tund for the redemption of his capital out of the equal amual mstalment of principar and interest combined, 115.
consent required on consolidation of existing loans, $12,353$.
flactuating nature of investment under the instahment and annuity methofs, 112, 115.
interests considered on equation of period. 409.
instalment method, effect of repayment hy, 112 .
commerciat and timamial undertakings, convension of loan into ordinary -hare capital or stock, $203,210,213$.
securty for local loans, 383 .
preferential nature of repayment out of sinking tund, 409 .
rembestment, frequent, of capital, under the instalment and annuity methods, $112,115$.
sinking fund method, a permanent invertment, 134.
option to convert into ordinary share capital or stock, 203.
Loans, consolidation of Sire Comsolidation of loans.
Loans, conversion of, of a private undertaking, into ordinary share capital or stock, 199.

Loans fund, definition, 129.

Loans of local authorities: how raised, and how repayable. ić Loan debt of local authonities.
Loans in respect of outlay having a short life, not repaid atter equation by the time the asset is worn out, $15,420,435$. Ser also lieborrowing.
Loans repaid and stock redeemed out of the sinking fund : application of whole or part of fund authorised by Public Health Act, 1875, Sec. 234 (5). 129.
ditto, non-accumulating sinking fund, 137.
interest to be added to the fund to make up the deticiency in the fund which would be caused by such application of the fund, 130 .
interest to be added to the fund to be equivalent to the interest which would have been produced by the amount so applied, 130 .
need not be added in the case of the non-accumulating fund, 137 .
should be treated as an investment of the fund, and not debited to the sinking fund account, 28, 130.
Stock purchased at a premium; par value only may be taken ont of the fund, the premium to be charged against the current year's revenue or rate account or against a reserve created for the purpose, 130.

Local anthorities, accounts of, report of the Departmental Committee, 1907, xii.
Local authorities, principles as to borrowing and repayment laid down in the Public Health Act, 1875, 110.
Local authority, detinition of term, xiii.
Local Govermment Board : anditors, and the pro forma account, 5.
County Stock Regulations, 1891, deficiency in fund, 161.
Local Government Act, 1888, 285.
method of equating the period of repayment, actual example, 402 .
model clauses (1893), s'ce.
not represented on parliamentary committees, 379 .
powers as to period of repayment, 111.
powers as to permanency oi works, 110 .
powers, on consolidation of loans, 285 .
practice as to tixius periods of repayment, 1.
pro forma accounts, copies should be sent to Board, in relation to all loans coming under the supervision of the Board, 5 .
Public Heal!h Act, 1875, powers under, 110.
Public Health Act, Amendment Act, 1890, powers under, 285.
sale of assets, proceeds of, 190.
supervision by Board avoided by proceeding by Special Act, 379 .
Local rate, or assessment in Great Britain, levied on the amnal value, and not on the capital value, xiii, 17 .
Logarithms, Chapter II. : advantages of, 3, 21 .
algebraical theory of indices, 24 .
antilog, to find, 26.
arithmetical progression, definition of 22.
Briggean or decimal logs, 22 .
characteristic, definition of. 25.
of numbers greater or less than mity, rules, 26.
common or decimal logarithms, 22.

Logarithms : definition of, 23.
divide one \log by another, to, 27,398 .
division by, 23, 24.
earliest published tables of, 21.
evolution by, 24 ,
fractional part or mantissa, always positive, 24 .
geometrical progression, algebraical formula, $\overbrace{}^{2}$
ditto, definition of, 22 .
ditto, relation to compound interest, 2 .
history of, 21.
interest of one pound for one year for 49 rates per cent. from $\frac{1}{4}$ per cent.
7 per cent, logs of, Table V, A, 48, 49.
integral part or characteristic may be either positive or negative, 26
involution by logs, 24.
mantissa, definition of, 24. always positive, 24 .
multiplication by $\log s, 23,24$.
negative characteristic, rule to multiply or divide a \log with, 26 .
ratios for 49 rates per cent, from $\frac{1}{4}$ per cent. to 7 per cent, Table, VA, 48,49 .
relation between arithmetical and geometrical progression, 22, 23.
tables of common logarithms, 21 .
Thoman's logs of an increased by 10 to avoid negative characteristic, $75,79$.
to find, of even powers of 10,23 .
Logarithmic formule and rules. See Formule, rules.
Logarithmic tables, of compond interest and anmuities, Thoman's, 73.
of numbers from 1 to 108,000 to seven places of decimals, 26 .
Loss on sale of investments representing the sinking fund, 161.
Mantissa, the fractional part of a logarithm, 24.
Manufacturing plants, outlay upon, 384 .
Markets, outlay upon, 381.
increasing value of site, 381 .
Hathematical formulee and rules. Sere Formulee.
Nathematical method of equation of period, 394, 399, 404. See Equated date, methods of obtaining.
Mathematical or true discount, compared with practical discount, 34.
Nathematical method by formula, indispensable if rate per cent. not given in any published table, 4, 5, 159.
Mathematical principles, 2, 19.
Mathematical tables, varieties of, 3. Schooling, 3. Inwood's, 3. Thoman's, 73. Sprague's, 3.
Nethod by step, of finding the amount of an annuty for a term of years accumulated for a further period, $153,338,429$.
Methode of adjustment described : ammal increment methods, 8 .
ammal increment (balance of loan) method. 8, 152, 260,
ditto, (ratio), 9, 151, 263, 279.
deductive method, 224.
direct method, 237.
statement shewing full details of each adjustment will be found at the end of the Chapter, 8.
summary of methods will be found at the head of each Chapter.

Methods of ascertaining equated date. S'ec Equated date.
Methods of book-keeping. See Book-keeping.
Methods of calculation, 82 .
Methods of repayment of loan debt, 107. S'e Loan debt of local authorities.
Model clauses of the Local Government Board, 6, 110.
Mortgages, for short terms, 414.
Multiplication, by logarithms, 23.
Municipal and private ownership and operation of public utilities in Great
Britain; enquiry by the National Civic Federation of New York, 1906; report, 1907, ix.
Municipal trading, ix.
National Civic Federation of New York, ix.
enquiry into the mumicipal and private ownership and operation of public utilities in Great Britain, 1906, ix.
financial details of undertakings examined, x.
committee of investigation, list of members, ix.
experts engaged on the enquiry, xi.
report, dated 1907, xi.
Non-accumulating sinking fund : accumulation of the fund under this method, 137.
advantages and disadvantages, 136, 137, 138.
annual incidence of loan charges, 136 .
application of part of fund in repayment of debt, 137.
book-keeping methods, 138.
compared with instalment and annuity methods, 136.
description of the method, 135.
first introduced in the model clauses of the Local Government Board, 1893, 6, 110.
income from investments, how treated, 135.
objects of, 135 .
relation to the instalment method, 135.
statement shewing the operation of the method and the amnual incidence of taxation, 137.
Number of bank accounts required. See Bank account.s. Book-keeping methods.
Number of investment accounts required. See Investment accounts. Bookkeeping methods.
Number of sinking funds required : in respect of loan borrowed over a series of years and repayable at different dates over a similar period, objections to keeping one sinking fund only, 350 .
in respect of a loan borrowed over a series of years, redeemable in one sum on a certain specified date, 353 .
Number of years to find. See Calculation forms.
may be found exactly by formula in the following cases : amount of one pound, 89.
present value of one pound, 89.
amount of one pound per annum, 94.
sinking fund instalment, 97.

Number of years to find: may be found approximately by reference to the published tables in the following cases: present value of one pound per annum, 100 .
anmuity one pound will purchase, 104.
method fully described. 397.
in equated period depends upon two factors, 405.
Objections to keeping one sinking fund for loans repayable at different dates: 350.

Obsolescence of assets. 346. sep Assets.
Occupation of lands by local authorities by lease rather than purchase, 380 .
One pound, amount of. Sier Amount of one pound.
One pound, interest of, for one year. rief Interest of one pound, etc.
One pound, present value of. Sir Present value of one pound.
One pound per annum, amount of. She Amount of one pound per anmm.
One pound per anmum, present value of. She Present value of one pound per annum.

Ontlay having short period, and effect of equation, 15, 420, 425, 435.
Outlay having varying periods of repayment included in one sanction, 346,390 .
Outlay upon manufacturing plants. 354.
Outlay upon renewals during later years of equated period, 416 .
Ownership and operation of public utilities in Great Britain, ix.

Parks and open spaces. outlay upon, 380.
Parliament, variation in conditions allowed, 379.
investment of the sinking fund, 130 .
final approval required for all loans, 379.
committees of, 379 .
policy as regards repayment periods, 38%.
Parliamentary Companies in Great Britain, xiv.
Past rate of accumulation, detisition of , 260. hir hate of aceumulation.
Payments, equation of. Sro Equation of payments.
Periodic payments. Sre Ammities.
Periods shorter than one year, method of calculation. 44.
Period of construction and relation to sinking frond. Sep Construction period.

Period of continuing utility. S'er Asset, life of asset.
Period of repayment, equation of. Ser Equation of the period.

Period of redemption or repayment :
commercial and linancial undertakings. 285.
determined with relation to the life of the asset, 377 .
equation of the period a financial operation, 415, 453.
may be varied on consolidation of luans, 285.
rarely altered in case of individual loans of local anthority, 285.
relation to the date of borrowing, 345 .
substituted repayment period, definition, 261.
mexpired repayment period, definition, 261 .
variable nature of conditions now existing, 379 .
variation in the period without any variation in the rate of actumn-
lation: sommary of method, 283.
rule, 295.
derivation of rule and formula, 296.
formula, 299.
pro forma account, 294.
method described, 286, 296.
variation in the period with a variation in the rate of accumulation : sumnary of method, 300 .
rule, 301.
derivation of rule and formula, 304.
formula, $306,307$.
pro forma account, 321.
method described, 303 .
proof of method, 307.
Permanence of works. See Asset, hife of, Local Govermment Board.
Permanent utility, works of almost, limit imposed as to period of repayment, 14, 380, 382.

Perpetual debt of local authorities, 379 .
Plants, manufacturing, outlay on, 384.
Post equated period, relief to, should be spread over the equated period in proportion to the life of the asset, $416,449$.
umber present method on equation is spread equally over the equated period, 409, 449.
relieved of all charges in respect of ammal instalment and interest on loan, 413, 449.
charts or diagrams, 454-7.
Practical discount compared with true or mathematical discount, 34, 35 . published tables of present values will not apply, 35.
Preface, v.
Preface, to American readers, ix.
Preferential nature of repayment by means of sinking fund, 409.
Preliminary stages in sanction of a loan, care bestowed to find the proper period to be allowed for repayment, $14,415$.
Premium, redemption of stock, at a, 221.
Premium paid on purchase of stock out of sinking tund, 12.
may not be taken out of sinking fund, 130 .

Present annual income from investments. Ser Income from investments. definition of, 260.
Present annual increment, definition of. Sec Annual increment.
Present annual instalment, definition of. Ser Annual instalment.
Present investments, value of, 147.
Present sum, to find the amount of. See Amount of one pound.
Present value of one pound, the, due at the end of any number of years, 42.
derivation of formulae, mathematical, 43.
Thoman's, 44.
formulae, mathematical, 42 .
Thoman's method, 73, 77.
Inwood's table, No. 2, 42.
logarithmic method of calculation, 42.
rate per cent. per annum. to find, 89.
ditto, standard calculation form, 89.
rules for calculations, by formula, rule 1, 43.
by published tables of compound interest, rule 2, 43.
by Thoman's method, rule 3,43 .
standard calculation form, author's, No. 2, 46, 47, 91.
years, number of, to find, 89.
ditto, standard calculation form, 89.
Present valne of one pound per ammm, the, for any number of years, 62 . derivation of formulae, mathematical, 63.

Thoman's, 78.
formulae, mathematical, 62.
Thoman's method, 73, 78.
Inwood's table, No. 4, 62.
logarithmic methods of calculation, 62.
rate per cent per annum, to find. 101.
ditto, standard calculation form. 101.
rules for calculations, by formula, rule 1, 63.
by published tables of compound interest, rule 2. 63.
by Thoman's method, rule 3,63 .
standard calculation form, anthor's, No. 4, 65, 66, 99.
years, number of, to find, 100.
(litto, standard calculation form, 100.
Principles governing the borrowing and repayment of the loan debt of local authorities, xi, 110.
Private ownership and operation of public ntilities, ix.
Private undertakings. Sep Commercial mondertakings.
Problems, sinking fund, the ammal instalment, Sec. Ill.
the amome in the find, 145.
a deficiency, 154, 171.
a smplus, 186, 199.
the rate of income from investments, 236, 322.
the rate of accumulation, 223.
the rates of incone and accumulation, 247.

Problems, sinking fund, the annual increment, Section IV.
the rate of accumulation, $259,277$.
the redemption period, $283,295$.
the rate of accumulation and the period in combination, 300 .
Proceeds of sale of assets, forming part of the security for the loan, 7, 189. applied in repayment of loan, 189.
may be paid into sinking fund and accelerate final repayment. 190.
may be applied in reduction of future annual instalment over whole or part of unexpired period, 190.
Profits of trading departments applied in aid of rate. $381,383$.
Profit and loss account, standard forms of, xii.
Profit on sale of investments representing the sinking fund, 188.
Pro forma accounts, should be prepared in all cases to shew final repayment, $5,17,145$.
should be kept in separate book, 5 .
amended account should be prepared after any future adjustment of the fund, 5.
copy should be sent to the Local Government Board, 5.
Local Government Board Auditors. 145.
Pro forma accounts :-

1. Normal accumulation of the fund, 168.
2. Correction of a deficiency by additional annual instalment spread over whole of unexpired period, 178.
3. Correction of a deficiency by additional annual instalment spread over early years only of unexpired period, 185.
4. Correction of a surplus by a reduced annnal instalment spread over whole of unexpired period, after payment into the fund of proceeds of sale of assets, 198.
5. Correction of a surplus by a reduced annual instalment spread over whole of unexpired period, after withdrawal of part of loan from operation of fund, 209 .
6. Correction of a surplus by a reduced annual instalment spread over whole of unexpired period. after withdrawal of part of loan from operation of fund, 219.
7. Correction of a deficiency by an increased annual instalment spread over whole of unexpired period, consequent upon a reduction in the rate of accumulation, without any variation in the rate of income from investments, 235.
8. Correction of a deficiency by an increased annual instalment spread over whole of unexpired period consequent upon a reduction in the rate of income from investments without any variation in the rate of accumulation, 246.
9. Correction of a deficiency by an increased annual instalment spread over whole of unexpired period consequent upon a variation in the rates of income from investments and accumulation. 255.
10. Correction of a deficiency by an increased annual instalment spread over whole of substituted period consequent upon a variation in the period of repayment, 294.
11. Correction of a deficiency by an increased amnual instalment spread over whole of substituted period consequent upon a variation in the rate of accumulation and in the period of repayment, 321 .

Pro forma accounts :-
12. Correction of a deficiency by an increased annual instalment spread over whole of unexpired period consequent upon a variation in the rate of income from investments to occur at a known future date. 339.
13. Correction of a deficiency by an increased annual instalment spread over whole of unexpired period consequent upon a variation in the rate of income from insestments to occur at a known future date. based upon the equated annual income, 341.
Equated loan interest. Reserve account: shewing the method of charging the equal amnual amounts of interest payable to the loanholders. after equation, to the revenue or rate accounts of each year, in proportion to the life of the asset, 447 .

Progressions, arithmetical, 28.
geometrical. 29. 30.
Proportionate part, of annual instalment. 10.
Public Health Act, 1875, alternative methods of repayment, 110.
expenses of sinking fund. 129.
interest on part of sinking fund applied in redemption of debt to be paid into the fund, 129 .
limit to total amount to be borrowed, 111.
limitation of period for purposes of the Act, 111.
Local Govermment Board to decide for what parposes money may be borrowed, 389.
methods of repayment, 110 .
permanency of works must be taken into account. 111, 390.
power to apply whole or part of sinking fund in redemption of debt, 129.
power to borrow limited. 110.
provisions as to borrowing and repayment of loans of local authorities, 6. 109 .
regulations as to exercise of borrowing powers, 109.
Public Health Acts Amendment Act. 1890, 285. 390.
Public utilities, early Acts of Parliament and repayment obligations. 379. manufacturing plants, 384.
many loans outstanding without any obligation as to repayment, 379 . markets. 382.
National Civic Federation of New York, enquiry, ix.
outlay hy local anthorities, a national question. 379.
outlay upon works of permanent utility should not be charged against present generation, arguments for and against, 3 so .
provided by pledging credit of eommunity, 377.
regard for future requirements. 3is. 381.
repayment of ontlay spread over period equivalent to life of asset, 378.
safeguard to futnre genemations, 14. 378. 384, 410. 412, 413.
sewage disposal. 381.
should be paid for in proportion to annual benefit received. 377.
tramways, 383.
want of uniformity of practice in loan conditions now existing, 379.
waterworks, 382.

Public Works Loan Commissioners, and life of asset, 390.
and Local Liovernment Board, 390.
instalment method, 111.
Published tables of compound interest. Ser Tables of compound interest.

Rate of accumulation, generat considerations, 225.
should be estimated on the low side, in the case of loans with long repayment periods, $148,326$.
may be estimated slightly lower to allow for a realuction in the firture rate of income from investments, 326 .
future rate of accumulation, detinition, 260.
past rate of accumulation, detinition, 260 .
variation in, without any variation in the rate of income from investments. summary of methods of adjustment, 223 .
method described, 230 .
pro forma account, 235.
annual increment (ratio) method, 277.
variation in, and also in the rate of income from investments. summary of methods of adjustment, 247.
methods described, 248.
pro forma account, 255.
variation in, and also in period of repayment, summary of methods of adjustment, 300 .
methods described, 303 .
pro forma arcount, 321.
ammual increment (ratio) method, 300 .
Rate of income from investments:
equated ammal income. 330 .
arthmetical method of finding, 334 .
error in method, 335.
pro forma account, 341 .
variation in, without any variation in the rate of accumulation, summary of methods of adjustment, 236.
methods described, $237,239$.
pro forma account, 246 .
variation in, and also in the rate of accumulation, summary of methods of adjustment, 247.
methods described, 248.
pro forma account, 255.
not umiform during unexpired repayment period, 322. 327.
variation known at time of making the adjustment. summary of method. 323.
method described, 328 .
pro forma account, 339.
variation anticipated, but mecertain as to time and imount, summary of method, 325.
method described, 332.
future equated annual income, 330 .
pro forma account. 341.

Ratepayer, accumulating sinking fund method, effect upon annual rates, 134.
additional burden on equation. 410, 412, 413.
annual contribution towards benefits received, 377,409 .
annuity method, effect upon annual rates. 115, 134.
depreciation should be charged against future generations, 386 .
immediate relief on equation of period, 409.
injustice to future generations after equation, 15, 410, 412, 413.
instalment method, effect upon annual rates, 112, 134.
interests on equation of period, 11, 12, 409.
non-accumulating sinking fund, effect upon annual rates, 136.
profits in aid of rate, 381, 383.
protection of future generations, 14. 378, 384, 410, 412, 413.
provision in adrance for future generations, 378.
relief to post equated period, 409. 413, 449.
renewals during final years of equated period, 416.
repayment for assets of permanent utility, 380 .
want of interest in municipal matters. 13, 383.
Rate per cent. general considerations as to, 225.
Rate per cent, to find. Sce Calculation forms.
may be found exactly by formula in the following cases :
amount of one pound, 89 .
present value of one pound, 89.
may be found approximately by reference to the published tables in the following cases :
amount of one pound per annum, 94.
sinking fund instalment, 98.
present value of one pound per annum, 101.
annuity one pound will purchase. 104.
Rate per cent., variations in, rate of accumulation only, 223 .
rate of income from investments only, 236.
rate of accumulation and income in combination, 247.
statement showing original and amended conditions in all variations considered. 265, 267.

Ratio, definition of, in algebraical formula relating to a geometrical progression, 30, 45, 52.
in mathematical formula relating to compound interest, 31.
values and corresponding logs. for 49 rates per cent. from $\frac{1}{4}$ per cent. to 7 per cent.. Table V. A. 48, 49.

Ratio method of adjustment. The annual increment. Ser Annual increment (ratio) method.
Ready reckoner tables of compound interest, etc., 3 .
Reborrowing, in respect of assets having a short life which are worn out before the equated date, 15, 420, 425, 435 .
Redemption of stock at a premium, 221 .
Redemption of loan in part, $2: 2$.

Redemption by drawings, in case of commercial and financial undertakings, 220.
Redemption fund, definition of, 129.
Redemption of stock by purchase out of the sinking fund. Sep Loans, etc., repaid out of the sinking fund.
Redemption period. Sec Period of redemption or repayment.
Relation between amount of one pound and of one pound per annum, 53.
Relation between life of asset and period of repayment, 14, 377.
Relief to early years of equated period as regards the :
annual instalment, 410.
interest on the loan, 412.
total annual loan charges, 413.
interest on the loan is the same as before equation, 412.
relief is entirely in respect of the annual instalment, and is at expense of later years of equated period, 411, 449.

Relief to rates on consolidation of loans, instance given in evidence before a Parliamentary Committee, 17, 452.

Renewals, effect upon later years of equated period, 416.
Repairs and renewals fund, 385.
Repayment, date of, $9,10,345$.
Repayment of debt and its relation to depreciation. See Depreciation of assets.

Repayment of loans out of moneys in the sinking fund. Sef Loans repaid out of the sinking fund.
Repayment, final, of the loan. See Statements, which will be found at the end of each chapter dealing with an adjustment in a sinking fund. See also the several pro forma accounts.
Repayment period. See Period of redemption or repayment.
Repayment, period of, equation of the. See Equation of the period of repayment.
Repayment of loans by local authorities (1902), report upon, 402.
Reports, Departmental Committee on the Accounts of Local Authorities, 1907, xii.

National Civic Federation of New York on the municipal and private ownership and operation of public utilities in (treat Britain, ix. Repayment of Loans by Local Authorities (1902), 402.
Reserve account for interest on loans after equation, 447.
Revenue account, standard forms of, xii.
Revenue earning undertakings: appreciation in value, 384 compared with spending departments, 415.
depreciation, covered by sinking fund when repayment period within life of asset, 385.

Revenue earning undertakings : depreciation should be charged when original loan repaid out of sinking fund, 385.
land, outlay upon, 384.
obsolete plant, 385.
outlay on manufacturing plants, 384.
outlay upon repairs, 384.
profits applied in aid of rate. $383,415$.
renewals fund, 385.
standard forms of accounts, xii.
wastage of asset. $384,385$.
wide divergence of charges by different municipalities, 383.
Rules for calculations (annual increment (ratio) method) :
rate of accumulation, variation in, 277.
period of redemption, variation in. 295.
rate of accumulation and period of redemption in combination, varia tion in, 301.

Rules for calculations (mathematical) :
amount of one pound, 36.
amount of one pound per annum, 51.
annuity method of repayment, 68, 114.
annuity which one pound will purchase, or of which one pound is the present value, 68.
equal annual instalment of principal and interest combined. 68, 114. present value of one pound, 42.
present value of one pound per annum, 63.
sinking fund method of repayment. 126.
Thoman's methods, are given at the head of each chapter.
Sale of assets. See Proceeds of sale of assets.
Sale of investments representing the sinking fund, loss on sale, 161.
profit on sale, 188.
Sanction of a loan. preliminary stages in the care bestowed to find the proper period to be allowed for repayment, $14,415$.

Sanction for works comprising various classes of outlay may specify amount and period in respect of each class. or only total amount with an equated period, 346, 390 .
Saving in annual rates on consolidation, 17, 452.
Schooling, William, F.R.A.S.. author of the new edition of Inwood's Tables (1899), 3.
Security for municipal loans, a mixed fund of capital and revenue, 383.
Separate sinking funds. Sir Number of sinking funds.
should be kept in all cases where loans are repayable at various dates, $350,362$.
Share capital or stock of private undertakings, methods of raising, xiv. preferences and priorities, xiv. conversion of loan debt into, 199.

Short term mortuges, 414.

Simple interest, arithmetical progression, 28.
formulae and rules, 28.
rule to find number of days' proportion of an instalment or other annual sum, 29.
Sinking fund:
accounts, number of, 10, 350, 353.
accumulation, rate of, Ser Rate of accumulation.
accumulating sinking fund, 128.
adjustment, methods of. Ser Adjustments.
amount in the fund, deficiency, 154. 171.
surplus, 186. 199.
annual charges to revenue or rate, 137, 139.
annual incidence of taxation, 139.
annual income from investments. Ser Income.
annual increment, $149,175,239,262$.
balance of loan method, $152,260$.
ratio method, 151, 263, 279.
annual instalment, method of calculating, 131.
before and after equation, 15, 418.
first, 365.
annuity method, comparison, 133.
application of, in repayment of debt, 129.
apportionment of one year's instalment, 365.
balance of loan method of adjustment, 152, 260.
bank accounts, 351.
bank interest, 352.
book-keeping methods, spe.
borrowing, dates of, see.
calculation of a typical sinking fund, 158.
commercial undertakings, see.
comparison with annuity and instalment methods, 133.
consolidation of Ioans, see.
construction, period of, 347, 391.
correction of a deficiency in the fund, 162, 173, 179
correction of a surplus in the fund, 186, 199.
dates of borrowing, see.
deductive method of adjustment, $224,283$.
deficiency in the fund, $7,154,162,173,179$.
depreciation, relation to, $346,385,415$.
derivation of formulae, 131.
direct method of adjustment, 237 .
equation of the incidence of taxation, 409.
equation of the period of repayment, 389 .
expenses of, 129.
final repayment of the loan, 139, 168.
financial undertakings, see commercial.
first annual instalment, 365
formulae, 127.
incidence of taxation, 377, 409.
income from investments, sep.
instalment, annual, son annual instalment.

Sinking fund (continued) :
interest suspense account, 352.
investment accounts, 351.
investments in loans of same local authority, 130 .
investments of the fund, 130, 147, 351.
investments, rate of income from, see income.
investments, sale of, 188.
investments, value of, 147.
irregular contributions to the fund, $346,356,367,391$.
loan, final repayment of, 139, 168.
Loans Find, 129.
loans repaid ont of the sinking fund, 129.
loss on sale of investment of the, 161.
method of repayment, 126.
methods of adjustment, see adjustments.
normal accumulation of the fund, pro forma account, 168.
non-accumulating sinking fund, $6,135$.
ditto, compared with instalment method, 135.
number of bank accounts, 351.
number of investment accounts, 351.
number of sinking funds required, 349.
number of years, to find, 97.
period of construction, 347, 391.
period of repayment, 283, 295, 300, 345.
period of repayment, equation of the, see.
position of, to ascertain, 160.
premium paid on redemption of stock, 130.
present investments, 147.
private undertakings, see commercial.
problems relating to the sinking fund, 145.
proceeds of sale of assets, $7,189$.
profit on sale of investments, 188.
pro forma account, normal accumulation, 168.
Public Health Act, 1875, see.
rate of accumulation, see.
rate of income from investments, sef rate of income.
rate per cent., to find, 98.
ratio method of adjustment, see annual increment (ratio) method.
Redemption Fund, 129.
redemption of debt, out of sinking fund, 129.
redemption period, 283, 295, 300, 345.
repayment, final. of the loan, 139, 168.
rules for calculating annual instalment, 127.
sale of assets. 7, 189.
sale of investments, 188.
separate funds for each year's borrowings, 348, 350 .
statements shewing the final repayment of the loan. 139, 168.
Stock redeemed out of the sinking fund, sep loans repaid, etc.
summary of methods, see methods.
surplus in the sinking fund, 186, 199.
surpense account for bank interest and income from investments, 352,

Sinking fund (continued) :
temporary instalments to the sinking fund, 347, 391.
typical sinking fund, 158.
variations in the sinking fund, see.
years, number of, to find, 97.
Sinking fund method of repayment, annual charges to revenue or rate compared with the instalment method, 133.
the annuity method, 133.
table shewing the operation of the method and the annual incidence of taxation, 139.

Sinking fund problems, the annual instalment, 145.
the annual increment, 259.
the date of borrowing and the redemption period, 345 .
Spending departments compared with revenue earning undertakings, 415.
Sprague's tables of compound interest, 3 .
Standard calculation forms, anthor's. See Calculation forms.
Standard forms of account, xii.
Statement shewing the final repayment of the loan will be found after each adjustment. See pro forma account.

Statement shewing the methods of adjustment will be found at the end of each chapter.

Step, method by, of finding the amount of annuity for a term of years, accuinulated for a further period, 183, 338, 429.

Stock or share capital of private undertakings in Great Britain, xiv.
Stock redeemed out of the sinking fund. See Loans redeemed, etc.
Stock regulations, cessation of annual contributions, 222.
a deficiency in the fund, 161.
necessity to equate period of repayment, 390 .
Stocks issued by local authorities, the principal canse of the equation of the period of repayment, 13,390 .
Stocks of local authorities generally. See under the various headings of "Loans," "Loan Debt," etc.

Subject matter of book, 1 .
Substituted repayment period, definition, 261.
summary of methods will be found at the head of the chapter dealing with each adjustment.
anmual increment (balance of lom) method, 8, 152, 260.
annual increment (ratio) method, 9, 151. 263, 279.
deductive method, 224
direct method, 237 .
Supersession of assets, 346.

Surplus in the fund, causes of, 7. 188.
compared with methods of adjusting a deticiency, 193, 219
excessive past accumulation of fund, 188, 189.
methods of adjustment. summary of, 186.
methods will apply to a deficiency, 226.
of a local authority and how applied, 189, 190.
payment into fund of proceeds of sale of assets, 189.
summary of method, 187.
method described, 189.
realised profit on sale of an investment, 188.
summary of method, 187.
method described, 189.
withdrawal of part of loan from operation of fund. 188, 199.
summary of methods of adjustment. 199.
original anmual instalment found by calculation :
summary of method. 199.
method described, 204.
original annual instalment. a stated sum :
summary of method. 200 .
method described, 210.

Suspense or reserve account for interest on loans after equation, 447.

Suspense account. sinking find interest; to avoid apportionment, where only one bank account and one investment account are kept in respect of several sinking funds, 352 .

Symbols used in the various formulae, 3 .
explanation of, $30,84,85$.
derivation of, 30 .
formulae relating to compound interest and annuities, 31.
geometrical progression, 30 .

Tables of compound interest, etc.. amount of one pound, 'Table I, 36.
amonnt of one pound per anmum. Table III, 50.
ammuity method of repayment. Table V. 67. 114.
amnuity which one pound will purchase, or of which one pound is the present value, Table V, 67 .
equal ammal instalment of principal and interest combined. 67, 114.
interest of one pound for one year ((r) from $\frac{1}{4}$ to 7 per cent. and logaritlims, 48.
Inwood's Tables, 3, 33.
present value of one pound. Table II, 42.
present value of one pound per annum, Table IV, 62.
ratios. from $\frac{1}{4}$ to 7 per cent. and logs., $48,49$.
Schooling, 3 .
Sprague's Tables (American), 3.
Thoman's Logaritlimic Tables, 3, 73.
varieties of, 3 .
'Taxation, annual incidence of, Tables shewing, under :
the instalment method, 113.
the annuity method, 122.
the accumulating sinking fund method, 459 .
the above methods compared, 140.
the non-accumulating sinking fund method, 137.
after equation. See equated period, etc.
Taxation, equation of the incidence of. sep Equation of the incidence of taxation.

Temporary sinking fund instalments, 356, 367, 391. See Construction period.

Thoman, Fédor. Logarithmic tables of compound interest and annuities, 3, 73.

Thoman's formulae, metlods and rules, advantages of, 5, 75.
amount of one pound, $36,73,77$.
amoint of one poimd per annum, 50, 73, 77.
an log. of, stated by the addition of 10 to the characteristic, $75,78,79$. an represents the annuity which one pound will purchase, or the
equal anmual instalment of principal and interest combined, 76.
annuity method, 67, 114.
ammuity one pound will purchase, 67, 73, 78.
equal annual instalment of principal and interest, 67, 114.
formulae compared with formulae relating to compound interest, 73. present value of one pound, 42, 73, 77.
present value of one pound per annum, 62, 73, 78.
rules are stated both generally and in logarithmic form at the head of each chapter.
sinking fund method, 127.
symbols used by Thoman, 75.
tables are contained in Inwood's tables.
tables give log. values only, 79 .
Town Halls, outlay upon, 380.
Trading undertakings. See Revenue earning undertakings.
Tramways, profits of mendertaking, 383.
renewals fund, 385.
standard forms of account, xii.
See also Revenue earning undertaking.
True or mathematical method of tinding equated period of repayment, 394, 399, 404.

Typical sinking fund, 8, 158.
Unexpired repayment period, 261.
Utility of asset. See Asset, life of asset.
Valne of investments, 147.

Variations in, aceumulation, rate of, without any variation in the rate of income from investments, 223, 277.
with a variation in the rate of income from investments, 247.
with a variation in the period of repayment, 300 .
consols, rate of interest upon, 225, 327.
income from investments, rate of :
without any variation in the rate of accumulation or the period of repayment, 236.
where the future variation in the rate of income from investments is definite both as to date and amount, $322,328$.
where the future variation is anticipated but is uncertain both as to date and amount, 322, 334 .
with it variation in the rate of accumulation, 247.
period of repayment :
without a variation in the rate of accumulation, 283, 295.
with a variation in the rate of accumulation, 300 .
separate effect of the variation in the:
rate of accumulation, 317.
period of repayment, 316.
Verification of calculations by alternative method of proof, 17
Wastage of asset. See depreciation.
Waterworks, 381.
argumenc against extended period of repayment, 382.
argument in support of extended period of repayment, 382.
importance of outlay beyond present requirements, 381 .
large amount invested in land, 382.
large cost of water areas, 381.
permanent character of works, 382.
See also under Revenue earning undertakings.
Works, permanence of. See asset, life of asset.
Years, number of, to find. See number of years.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE．THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \＄1．OO ON THE SEVENTH DAY
OVERDUE．

YO 23 con

[^0]: * In America, Tables of Compound Interest, Discount, Sinking F'unds, Anmuities, etc., by Charles E. sprague.

[^1]: £1027.882

[^2]: $£ 696: 3 \cdot 19$

